信息网络安全 ›› 2015, Vol. 15 ›› Issue (7): 64-70.doi: 10.3969/j.issn.1671-1122.2015.07.010

• • 上一篇    下一篇

基于统计模型的DTW签名认证系统

鄢晨丹1,2(), 杨阳1,2, 程久军1,2, 邵剑雨1,2   

  1. 1.同济大学计算机科学与工程系,上海 201804
    2.同济大学嵌入式系统与服务计算教育部重点实验室,上海 201804
  • 收稿日期:2015-06-15 出版日期:2015-07-01 发布日期:2015-07-28
  • 作者简介:

    作者简介: 鄢晨丹(1992-),女,江西,硕士研究生,主要研究方向:移动互联网、信息安全、车联网;杨阳(1991-),男,山东,硕士研究生,主要研究方向:移动互联网、车联网、信息安全;程久军(1974-),男,安徽,副教授,博士,主要研究方向:对等(P2P)网络、隐私保护、移动计算以及物联网等;邵剑雨(1992-),男,山东,硕士研究生,主要研究方向:移动互联网、车联网。

  • 基金资助:
    国家国际科技合作专项[2013DFM10100]

A DTW Signature Verification System Based on Statistical Modeling

YAN Chen-dan1,2(), YANG Yang1,2, CHENG Jiu-jun1,2, SHAO Jian-yu1,2   

  1. 1. Department of Computer Science & Engineering, Tongji University, Shanghai 201804, China
    2. Key Laboratory of Embedded System and Service Computing of Ministry of Education, Tongji University, Shanghai 201804, China
  • Received:2015-06-15 Online:2015-07-01 Published:2015-07-28

摘要:

签名是一种文件批复和交易的重要认证手段。随着电子交易的发展,在线手写签名认证识别成为信息安全中的一个重要问题。其原理是假定人的签名是独特而稳定的,将签名的图像、笔顺、压力和速度等信息与真实签名样本进行比对校验,从而鉴别签名的真伪。动态时间归正(DTW)算法是一种常用的校验算法,在非线性时间对齐的基础上对计算测试签名和真实签名的距离进行判断。然而判断阈值难以确定,其阈值与个体书写习惯相关,难以统计或者训练学习。优化的DTW算法采用特征点统计模型,将签名的特征点视为一定的概率分布,建立统计模型,将概率小于阈值的特征点视为非法签名,该阈值概率参数与个体特性无关,然而该方法需要大量同一人的真实签名样本进行统计。文章提出了一种改进的基于统计模型的DTW算法,在少量或只有一个真实签名情况下仍然可以进行认证,并通过实验证明了其有效性。

关键词: 签名认证, 在线, DTW, 统计模型

Abstract:

Signature is an essential authentication means for document approvals and transactions. Online handwritten signature verification has become a key issue in information security with the development of electronic transactions. The principle of signature verification is, supposing the signature of a person is unique and stable, to compare the image, stroke, pressure and velocity information of an inspecting signature with the true signature samples. Thus, the signature can be verified or not. Dynamic time warping (DTW) algorithm is a common algorithm for checking the verification of signatures. It calculates the distance between an inspecting signature and its true signature to judge the verification in the nonlinear time alignment. However, it is hard to determine the threshold, which is related with the individual writing habits. So, it is difficult to do statistics or training. The optimized DTW algorithm, which is based on statistical model of characteristic points, views signature’s characteristic points as a certain probability distribution. Through statistical models, the probability less than the threshold of the feature point is regarded as illegal signature. In this algorithm, the threshold is independent from the individual characteristics. However, this method still needs a lot of a certain person’s true signature samples to train for statistics. In this paper, an improved DTW algorithm based on statistical models is proposed, in which a small amount or even one true signature can be authenticated, and its validity is proved by using this method.

Key words: signature verification, online, DTW, statistical modeling

中图分类号: