信息网络安全 ›› 2025, Vol. 25 ›› Issue (1): 27-35.doi: 10.3969/j.issn.1671-1122.2025.01.003
收稿日期:
2024-03-19
出版日期:
2025-01-10
发布日期:
2025-02-14
通讯作者:
蔡明月
E-mail:caimingyue2001@163.com
作者简介:
何业锋(1978—),女,山东,教授,博士,主要研究方向为量子密码协议与分析、车联网信息安全|蔡明月(2001—),女,吉林,硕士研究生,主要研究方向为信息安全和量子密码|梁熙媛(2000—),女,陕西,硕士研究生,主要研究方向为信息安全和量子密码
基金资助:
HE Yefeng, CAI Mingyue(), LIANG Xiyuan
Received:
2024-03-19
Online:
2025-01-10
Published:
2025-02-14
Contact:
CAI Mingyue
E-mail:caimingyue2001@163.com
摘要:
半量子密钥协商适用于参与者能力较低或承担不起昂贵设备的情况,比传统的量子密钥协商更符合实际需求。然而,目前三方半量子密钥协商协议的研究较少且普遍存在效率较低的问题。为此,文章提出一种基于逻辑六比特
中图分类号:
何业锋, 蔡明月, 梁熙媛. 基于逻辑$\chi $态的三方半量子密钥协商协议[J]. 信息网络安全, 2025, 25(1): 27-35.
HE Yefeng, CAI Mingyue, LIANG Xiyuan. The Three-Party Semi-Quantum Key Agreement Protocol Based on Logical $\chi $-States[J]. Netinfo Security, 2025, 25(1): 27-35.
表2
Alice获取的部分密钥
Bell态 | 协议中得到的 | 协议中得到的 | ||||
---|---|---|---|---|---|---|
1 | 0 | |||||
0 | 1 | |||||
0 | 1 | |||||
1 | 0 |
表3
Bob和Charlie获得的部分密钥
0 | 1 | ||||
1 | 0 | ||||
0 | 0 | ||||
0 | 1 |
[1] | MIN Huiyi, GUI Rizhou, QING Ruixu. Anonymous Quantum Conference Key Agreement Using the W State[J]. Quantum Information Processing, 2023, 22(8): 306-319. |
[2] | MA Xiao, SHI Yunmei, SONG Ying, et al. A Certificate-Free Cross-Domain Quantum Key Negotiation Protocol[J]. Journal of Terahertz Science and Electronic Information, 2020, 18(6): 1098-1102. |
马骁, 施运梅, 宋莹, 等. 一种无证书的跨域量子密钥协商协议[J]. 太赫兹科学与电子信息学报, 2020, 18(6):1098-1102. | |
[3] | HUANG Xi, ZHANG Shibin, YAN Chang. Quantum Key Agreement Protocol Based on Quantum Search Algorithm[J]. International Journal of Theoretical Physics, 2021, 60(3): 1-10. |
[4] | HE Yefeng, MA Wenping. Two-Party Quantum Key Agreement Based on Four-Particle GHZ States[J]. International Journal of Quantum Information, 2016, 14(1): 7-13. |
[5] | SHE Xiangjiang, LEI Fang, XIAN Jinfang. Two-Party Quantum Key Agreement with Six-Particle Entangled States Against Collective Noise[J]. International Journal of Theoretical Physics, 2023, 62(11): 235-240. |
[6] | BENNETT C, BRASSARD G. Quantum Cryptography: Public Key Distribution and Coin Tossing[J]. Theoretical Computer Science, 2014, 560(1): 7-11. |
[7] | MILLER A. Time Synchronization in Satellite Quantum Key Distribution[J]. Problems of Information Transmission, 2024, 59(4): 225-238. |
[8] |
ZAHIDY M, RIBEZZO D, LAZZARI D C, et al. Practical High-Dimensional Quantum Key Distribution Protocol over Deployed Multicore Fiber[J]. Nature Communications, 2024, 15(1): 1651-1659.
doi: 10.1038/s41467-024-45876-x pmid: 38395964 |
[9] | RENNER R. Security of Quantum Key Distribution[EB/OL]. (2005-12-30)[2024-03-12]. https://doi.org/10.48550/arXiv.quant-ph/05122258. |
[10] | LANG Yanfeng. Quantum Private Comparison Using Single Bell State[J]. International Journal of Theoretical Physics, 2021, 60(11): 4030-4036. |
[11] | GIANNI J, QU Z. New Quantum Private Comparison Using Hyperentangled GHZ State[J]. Journal of Quantum Computing, 2021, 3(2): 45-54. |
[12] | WU Wanqing, ZHAO Yongxin. Quantum Private Comparison of Size Using D-Level Bell States with a Semi-Honest Third Party[J]. Quantum Information Processing, 2021, 20(4): 155-159. |
[13] | ZHOU N, ZENG G, XIONG J. Quantum Key Agreement Protocol[J]. Electronics Letters, 2004, 40(18): 1149-1150. |
[14] | CHONG S K, HWANG T. Quantum Key Agreement Protocol Based on BB84[J]. Optics Communications, 2010, 283(6): 1192-1195. |
[15] | LIU Bingxin, HUANG Ruichen, YANG Yuguang, et al. Measurement-Device-Independent Multi-Party Quantum Key Agreement[EB/OL]. (2023-12-14)[2024-03-12]. https://www.frontiersin.org/journals/quantum-science-and-technology/articles/10.3389/frqst.2023.1182637/full. |
[16] | LI Lei, LI Zhi. A Verifiable Multiparty Quantum Key Agreement Based on Bivariate Polynomial[J]. Information Sciences, 2020, 521(2): 343-349. |
[17] | TANG Jie, SHI Lei, WEI Jiahua, et al. Novel Multi-Party Quantum Key Agreement Protocols under Collective Noise[EB/OL]. (2021-01-06)[2024-03-12]. https://worldscientific.com/doi/abs/10.1142/S0217984921501372. |
[18] | HUANG Wei, WEN Qianyan, LIU Bin, et al. Quantum Key Agreement with EPR Pairs and Single-Particle Measurements[J]. Quantum Information Processing, 2014, 13(3): 649-663. |
[19] | BOYER M, KENIGSBERG D, MOR T, et al. Quantum Key Distribution with Classical Bob[EB/OL]. (2007-10-05)[2024-03-12]. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.99.140501. |
[20] | SHUKLA C, THAPLIYAL K, PATHAK A. Semi-Quantum Communication: Protocols for Key Agreement, Controlled Secure Direct Communication and Dialogue[J]. Quantum Information Processing, 2017, 16(12): 1-19. |
[21] | LI Huanhuan. Semi-Quantum Key Negotiation Protocol Based on $\chi $- Type Entangled States and High-Dimensional Quantum States[D]. Nanchang:Nanchang University, 2021. |
李欢欢. 基于χ型纠缠态和高维量子态的半量子密钥协商协议[D]. 南昌: 南昌大学, 2021. | |
[22] | HE Yefeng, PANG Yibo, DI Man, et al. Two-Party Semi Quantum Key Negotiation Protocol Based on G-Like states[J]. China Laser, 2022, 49(13): 167-172. |
何业锋, 庞一博, 狄曼, 等. 基于G-like态的两方半量子密钥协商协议[J]. 中国激光, 2022, 49(13):167-172. | |
[23] |
ZHOU Nanrun, ZHU Kongni, WANG Yunqian. Three-Party Semi-Quantum Key Agreement Protocol[J]. International Journal of Theoretical Physics, 2020, 59(3): 663-676.
doi: 10.1007/s10773-019-04288-0 |
[24] | XU Tianjie, CHEN Ying, GENG Maojie, et al. A Single-State Tripartite Semi-Quantum Key Negotiation Method Based on Three-Particle GHZ Entangled States: China, CN202111522519.2[P]. 2022-04-05. |
徐天婕, 陈颖, 耿茂洁, 等. 基于三粒子GHZ纠缠态的单态三方半量子密钥协商方法:中国, CN202111522519.2[P]. 2022-04-05. | |
[25] | HE Yefeng, PANG Yibo, DI Man, et al. Quadratic Semi-Quantum Key Negotiation Protocol Based on Four-Particle Cluster States[J]. Journal of Optics, 2023, 43(20): 1-7. |
何业锋, 庞一博, 狄曼, 等. 基于四粒子Cluster态的四方半量子密钥协商协议[J]. 光学学报, 2023, 43(20):1-7. | |
[26] | LIU Wenjie, CHEN Zhenyu, JI S, et al. Multi-Party Semi-Quantum Key Agreement with Delegating Quantum Computation[J]. International Journal of Theoretical Physics, 2017, 56(10): 3164-3174. |
[1] | 胡丞聪, 胡红钢. 基于格的最优轮数口令认证秘密共享协议[J]. 信息网络安全, 2024, 24(6): 937-947. |
[2] | 朱敏, 肖昊. 一种面积高效的双态可配置NTT硬件加速器[J]. 信息网络安全, 2024, 24(6): 959-967. |
[3] | 肖昊, 赵延睿, 胡越, 刘笑帆. 抗量子密码中快速数论变换的硬件设计与实现[J]. 信息网络安全, 2023, 23(4): 72-79. |
[4] | 贾恒越, 刘康婷, 武霞, 王卯宁. 基于Bell态的量子支票协议[J]. 信息网络安全, 2022, 22(6): 38-43. |
[5] | 陶云亭, 孔凡玉, 于佳, 徐秋亮. 抗量子格密码体制的快速数论变换算法研究综述[J]. 信息网络安全, 2021, 21(9): 46-51. |
[6] | 李鱼, 韩益亮, 李喆, 朱率率. 基于LWE的抗量子认证密钥交换协议[J]. 信息网络安全, 2020, 20(10): 92-99. |
[7] | 张顺, 陈张凯, 梁风雨, 石润华. 基于Bell态的量子双向身份认证协议[J]. 信息网络安全, 2019, 19(11): 43-48. |
[8] | 刘明烨, 韩益亮, 杨晓元. 基于准循环低密度奇偶校验码的签密方案研究[J]. 信息网络安全, 2016, 16(11): 66-72. |
[9] | 徐权佐, 蔡庆军. 一种基于编码的公钥密码体制的参数选择研究[J]. 信息网络安全, 2014, 14(10): 54-58. |
[10] | 张焕国;王后珍. 抗量子计算密码体制研究(续前)[J]. , 2011, 11(6): 0-0. |
[11] | 张焕国;王后珍. 抗量子计算密码体制研究(待续)[J]. , 2011, 11(5): 0-0. |
[12] | 刘晓芬. 量子密码安全性分析[J]. , 2011, 11(10): 0-0. |
[13] | 黄帆;刘玉. 量子保密通信探悉[J]. , 2009, 9(4): 0-0. |
[14] | 吕兴凤;姜誉. 计算机密码学中的加密技术研究进展[J]. , 2009, 9(4): 0-0. |
[15] | 王立新;俞永超;王薇. 量子密码——数字化战场信息防御的"金锁"[J]. , 2008, 8(2): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||