信息网络安全 ›› 2024, Vol. 24 ›› Issue (4): 574-586.doi: 10.3969/j.issn.1671-1122.2024.04.008
收稿日期:
2023-10-08
出版日期:
2024-04-10
发布日期:
2024-05-16
通讯作者:
宋亚飞 作者简介:
孙隽丰(1995—),男,山东,助理工程师,硕士研究生,主要研究方向为网络安全态势预测|李成海(1966—),男,山东,教授,硕士,主要研究方向为网络安全态势感知|宋亚飞(1988—),男,河南,副教授,博士,主要研究方向为智能信息处理
基金资助:
SUN Junfeng1,2, LI Chenghai1, SONG Yafei1()
Received:
2023-10-08
Online:
2024-04-10
Published:
2024-05-16
摘要:
针对量子粒子群优化算法前期易陷入局部极值点、后期寻优精度不高等问题,文章提出一种自适应交叉算子的混沌量子粒子群优化算法,并将其应用于BP神经网络超参数寻优。首先,利用Logistics映射初始种群为混沌序列进行最优解搜索,增强初始种群的随机性与遍历性,提高算法寻优能力;然后,通过纵向交叉操作进行种群中个体的信息交换,并引入自适应交叉概率公式,增加种群多样性,提高算法的寻优精度;最后,在实验中,一方面,选取8个函数在高低两个维度进行验证,同时进行Wilcoxon秩和检验分析以及消融实验,验证该算法相较其他算法的有效性;另一方面,通过算法优化BP神经网络应用到网络安全态势预测任务中,实验结果表明该算法收敛速度相较于对比算法有大幅度提升。
中图分类号:
孙隽丰, 李成海, 宋亚飞. ACCQPSO:一种改进的量子粒子群优化算法及其应用[J]. 信息网络安全, 2024, 24(4): 574-586.
SUN Junfeng, LI Chenghai, SONG Yafei. ACCQPSO: An Improved Quantum Particle Swarm Optimization Algorithm and Its Applications[J]. Netinfo Security, 2024, 24(4): 574-586.
表1
基准函数
函数 | 函数名称 | 函数公式 | 极值点 | 维度 | 定义域 | 最佳值 |
---|---|---|---|---|---|---|
Schwefel’s | 公式(12) | 单个 | 5 | [-10,10] | 0 | |
30 | [-10,10] | 0 | ||||
Step | 公式(13) | 单个 | 5 | [-100,100] | 0 | |
30 | [-100,100] | 0 | ||||
Rosenbrock | 公式(14) | 单个 | 5 | [-30,30] | 0 | |
30 | [-30,30] | 0 | ||||
Quartic | 公式(15) | 单个 | 5 | [-1.28,1.28] | 0 | |
30 | [-1.28,1.28] | 0 | ||||
Alpine | 公式(16) | 多个 | 5 | [-10,10] | 0 | |
30 | [-10,10] | 0 | ||||
Griewing | 公式(17) | 多个 | 5 | [-600,600] | 0 | |
30 | [-600,600] | 0 | ||||
Rastrigin | 公式(18) | 多个 | 5 | [-5.12,5.12] | 0 | |
30 | [-5.12,5.12] | 0 | ||||
Ackley | 公式(19) | 多个 | 5 | [-32,32] | 0 | |
30 | [-32,32] | 0 |
表2
基准函数结果对比
函数 | 算法 | 最佳值 | 平均值 | 标准差 |
---|---|---|---|---|
GA | 1.179E-03 | 1.736E-01 | 2.813E-01 | |
PSO | 3.386E-10 | 4.002E-01 | 1.960E+00 | |
QPSO | 5.645E-02 | 2.103E+00 | 2.164E+00 | |
CPSO | 1.011E-11 | 7.403E-11 | 5.883E-11 | |
CQPSO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
ACCQPSO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
GA | 4.423E+00 | 1.162E+01 | 3.618E+00 | |
PSO | 5.687E+01 | 1.091E+02 | 2.618E+01 | |
QPSO | 2.567E+01 | 5.530E+01 | 2.056E+01 | |
CPSO | 2.773E-06 | 2.217E-05 | 2.408E-05 | |
CQPSO | 0.000E+00 | 1.042E-13 | 2.210E-13 | |
ACCQPSO | 0.000E+00 | 3.631E-14 | 1.260E-13 | |
GA | 2.756E-04 | 6.721E+00 | 2.336E+01 | |
PSO | 7.081E-18 | 2.926E-16 | 6.654E-16 | |
QPSO | 1.815E-01 | 1.052E+02 | 1.209E+02 | |
CPSO | 8.601E-22 | 2.624E-19 | 5.639E-19 | |
CQPSO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
ACCQPSO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
GA | 3.549E+02 | 1.444E+03 | 1.018E+03 | |
PSO | 1.151E+04 | 3.308E+04 | 1.105E+04 | |
QPSO | 2.895E+03 | 1.143E+04 | 5.316E+03 | |
CPSO | 1.329E-11 | 1.807E-10 | 2.482E-10 | |
CQPSO | 2.829E-27 | 1.862E-24 | 3.215E-24 | |
ACCQPSO | 8.078E-28 | 2.568E-26 | 6.697E-26 | |
GA | 1.943E+00 | 1.434E+02 | 2.823E+02 | |
PSO | 1.674E-01 | 1.355E+04 | 3.118E+04 | |
QPSO | 4.713E+00 | 2.839E+03 | 4.986E+03 | |
CPSO | 5.082E-04 | 1.433E+00 | 1.270E+00 | |
CQPSO | 1.222E-04 | 9.922E-01 | 2.318E+00 | |
ACCQPSO | 7.023E-12 | 3.789E-02 | 6.724E-02 | |
GA | 3.286E-01 | 7.356E+02 | 3.046E+03 | |
PSO | 3.383E-01 | 2.768E+03 | 1.363E+04 | |
QPSO | 4.475E-01 | 6.759E+03 | 1.931E+04 | |
CPSO | 4.267E-03 | 1.386E+00 | 7.884E-01 | |
CQPSO | 1.275E-03 | 1.232E+00 | 2.070E+00 | |
ACCQPSO | 4.234E-06 | 2.260E-01 | 2.458E-01 | |
GA | 2.495E-03 | 2.495E-03 | 2.495E-03 | |
PSO | 2.849E-04 | 4.653E-03 | 3.535E-03 | |
QPSO | 4.743E-04 | 2.088E-02 | 3.474E-02 | |
CPSO | 7.831E-05 | 6.496E-04 | 4.900E-04 | |
CQPSO | 4.897E-05 | 5.269E-04 | 3.328E-04 | |
ACCQPSO | 1.320E-05 | 1.603E-04 | 1.171E-04 | |
GA | 4.687E-01 | 1.695E+00 | 1.476E+00 | |
PSO | 5.139E+00 | 6.141E+01 | 3.582E+01 | |
QPSO | 2.707E-01 | 4.380E+00 | 4.426E+00 | |
CPSO | 3.467E-03 | 1.093E-02 | 9.228E-03 | |
CQPSO | 6.994E-04 | 1.984E-03 | 1.027E-03 | |
ACCQPSO | 1.455E-04 | 8.092E-04 | 4.409E-04 | |
GA | 4.073E-07 | 2.639E-02 | 9.343E-02 | |
PSO | 2.047E-19 | 2.586E-18 | 3.293E-18 | |
QPSO | 5.151E-03 | 1.403E+00 | 2.659E+00 | |
CPSO | 2.729E-23 | 1.964E-21 | 4.335E-21 | |
CQPSO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
ACCQPSO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
GA | 1.334E+00 | 1.096E+01 | 8.915E+00 | |
PSO | 1.231E+02 | 3.142E+02 | 1.110E+02 | |
QPSO | 2.694E+01 | 9.791E+01 | 4.704E+01 | |
CPSO | 3.377E-14 | 1.201E-12 | 1.211E-12 | |
CQPSO | 6.942E-29 | 8.962E-27 | 1.949E-26 | |
ACCQPSO | 0.000E+00 | 1.628E-28 | 3.936E-28 | |
GA | 5.863E-02 | 1.700E+00 | 2.434E+00 | |
PSO | 2.464E-02 | 1.030E-01 | 5.637E-02 | |
QPSO | 1.142E-01 | 2.019E+00 | 2.088E+00 | |
CPSO | 8.216E-15 | 1.098E-01 | 5.315E-02 | |
CQPSO | 1.616E-07 | 5.068E-02 | 2.686E-02 | |
ACCQPSO | 0.000E+00 | 1.555E-02 | 1.308E-02 | |
GA | 4.014E+00 | 1.351E+01 | 6.839E+00 | |
PSO | 3.908E+01 | 2.884E+02 | 1.146E+02 | |
QPSO | 2.400E+01 | 1.021E+02 | 4.404E+01 | |
CPSO | 1.093E-09 | 6.062E-02 | 1.728E-01 | |
CQPSO | 0.000E+00 | 1.073E-03 | 3.599E-03 | |
ACCQPSO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
GA | 1.990E+00 | 6.125E+00 | 3.009E+00 | |
PSO | 9.950E-01 | 6.706E+00 | 5.596E+00 | |
QPSO | 1.775E+00 | 7.903E+00 | 4.252E+00 | |
CPSO | 0.000E+00 | 1.708E+00 | 2.545E+00 | |
CQPSO | 0.000E+00 | 2.410E-02 | 1.682E-01 | |
ACCQPSO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
GA | 4.506E+01 | 7.801E+01 | 1.296E+01 | |
PSO | 1.374E+02 | 2.379E+02 | 5.328E+01 | |
QPSO | 1.336E+02 | 2.184E+02 | 4.345E+01 | |
CPSO | 1.480E+02 | 1.960E+02 | 2.032E+01 | |
CQPSO | 0.000E+00 | 2.979E+01 | 2.087E+01 | |
ACCQPSO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
GA | 9.980E-03 | 1.418E+00 | 1.740E+00 | |
PSO | 3.488E-09 | 1.369E-08 | 1.043E-08 | |
QPSO | 4.044E-01 | 5.817E+00 | 2.909E+00 | |
CPSO | 3.251E-11 | 2.183E-10 | 1.365E-10 | |
CQPSO | 4.441E-16 | 4.441E-16 | 3.451E-31 | |
ACCQPSO | 4.441E-16 | 4.441E-16 | 3.451E-31 | |
GA | 5.248E+00 | 8.624E+00 | 1.812E+00 | |
PSO | 1.993E+01 | 1.997E+01 | 3.995E-02 | |
QPSO | 1.011E+01 | 1.570E+01 | 1.943E+00 | |
CPSO | 8.715E-07 | 1.400E+01 | 9.166E+00 | |
CQPSO | 2.176E-14 | 5.746E-13 | 1.818E-12 | |
ACCQPSO | 4.441E-16 | 2.908E-14 | 2.262E-14 |
表3
Wilcoxon秩和校验$p$值
函数 | GA | PSO | QPSO | CPSO | CQPSO | |||||
---|---|---|---|---|---|---|---|---|---|---|
3.3111E-20 | + | 3.3101E-20 | + | 3.3111E-20 | + | 3.3111E-20 | + | NAN | = | |
4.4381E-18 | + | 4.4381E-18 | + | 4.4381E-18 | + | 4.4381E-18 | + | 2.7407E-4 | + | |
3.3111E-20 | + | 3.3111E-20 | + | 3.3111E-20 | + | 3.3111E-20 | + | NAN | = | |
7.0629E-18 | + | 7.0629E-18 | + | 7.0629E-18 | + | 7.0629E-18 | + | 1.3375E-12 | + | |
7.2232E-19 | + | 1.0090E-18 | + | 7.2232E-19 | + | 8.9749E-15 | + | 2.1929E-15 | + | |
5.1388E-18 | + | 4.0923E-17 | + | 1.4232E-18 | + | 4.8825E-14 | + | 7.9311E-11 | + | |
7.2102E-19 | + | 1.5926E-18 | + | 7.2232E-19 | + | 4.2452E-13 | + | 2.8630E-10 | + | |
7.2232E-19 | + | 7.2232E-19 | + | 7.2232E-19 | + | 7.2232E-19 | + | 1.3706E-13 | + | |
3.3111E-20 | + | 3.3111E-20 | + | 3.3111E-20 | + | 3.3111E-20 | + | NAN | = | |
6.9868E-18 | + | 6.9868E-18 | + | 6.9868E-18 | + | 6.9868E-18 | + | 2.4991E-13 | + | |
7.0502E-18 | + | 5.9606E-17 | + | 7.0502E-18 | + | 2.6493E-13 | + | 1.1435E-11 | + | |
3.3111E-20 | + | 3.3111E-20 | + | 3.3111E-20 | + | 3.3111E-20 | + | 2.5398E-4 | + | |
2.4537E-21 | + | 2.3412E-21 | + | 2.4537E-21 | + | 5.6468E-16 | + | 5.1287E-4 | + | |
2.4537E-21 | + | 2.4537E-21 | + | 2.4537E-21 | + | 2.4537E-21 | + | 1.5528E-18 | + | |
3.5094E-21 | + | 3.5094E-21 | + | 3.5094E-21 | + | 3.5094E-21 | + | NAN | = | |
6.9178E-19 | + | 6.9178E-19 | + | 6.9178E-19 | + | 6.9178E-19 | + | 4.9670E-16 | + |
表4
模型消融实验结果
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
---|---|---|---|---|---|---|---|---|
QPSO | 2.103E+ 00 | 2.164E+ 00 | 5.530E+ 01 | 2.056E+ 01 | 1.052E+ 02 | 1.209E+ 02 | 1.143E+ 04 | 5.316E+ 03 |
ACQPSO | 0.000E+ 00 | 0.000E+ 00 | 7.532E-14 | 1.838E-13 | 0.000E+ 00 | 0.000E+ 00 | 4.268E-25 | 1.335E-24 |
ChaoticQPSO | 7.771E-11 | 6.008E-11 | 2.243E-05 | 2.664E-05 | 2.949E-19 | 6.207E-19 | 1.916E-10 | 2.712E-10 |
ACCQPSO | 0.000E+ 00 | 0.000E+ 00 | 3.631E-14 | 1.260E-13 | 0.000E+ 00 | 0.000E+ 00 | 2.568E-26 | 6.697E-26 |
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
QPSO | 2.839E+ 03 | 4.986E+ 03 | 6.759E+ 03 | 1.931E+ 04 | 2.088E-02 | 3.474E-02 | 4.380E+ 00 | 4.426E+ 00 |
ACQPSO | 2.343E-01 | 1,447E+ 00 | 9,813E-01 | 1.270E+ 00 | 4.139E-04 | 2.368E-04 | 7.390E-03 | 3.214E-03 |
ChaoticQPSO | 1.297E+ 00 | 8.171E-01 | 1.402E+ 00 | 8.329E-01 | 5.986E-04 | 3.497E-04 | 1.186E-02 | 1.008E-02 |
ACCQPSO | 3.789E-02 | 6.724E-02 | 2.260E-01 | 2.458E-01 | 1.603E-04 | 1.171E-04 | 8.092E-04 | 4.409E-04 |
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
QPSO | 1.403E+ 00 | 2.659E+ 00 | 9.791E+ 01 | 4.704E+ 01 | 2.019E+ 00 | 2.088E+ 00 | 1.021E+ 02 | 4.404E+ 01 |
ACQPSO | 0.000E+ 00 | 0.000E+ 00 | 3.872E-27 | 7.893E-27 | 3.138E-02 | 2.131E-02 | 1.068E-13 | 3.674E-13 |
ChaoticQPSO | 1.541E-21 | 3.729E-21 | 1.175E-12 | 1.087E-12 | 1.125E-01 | 5.540E-02 | 7.577E-02 | 1.902E-01 |
ACCQPSO | 0.000E+ 00 | 0.000E+ 00 | 1.628E-28 | 3.936E-28 | 1.555E-02 | 1.308E-02 | 0.000E+ 00 | 0.000E+ 00 |
平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | 平均值 | 标准差 | |
QPSO | 7.903E+ 00 | 4.252E+ 00 | 2.184E+ 02 | 4.345E+ 01 | 5.817E+ 00 | 2.909E+ 00 | 1.570E+ 01 | 1.943E+ 00 |
ACQPSO | 3.026E-11 | 1.734E-10 | 2.643E-04 | 2.047E-04 | 4.441E-16 | 3.451E-31 | 1.756E-13 | 1.963E-12 |
ChaoticQPSO | 1.848E+ 00 | 2.573E+ 00 | 1.944E+ 02 | 1.961E+ 01 | 2.300E-10 | 1.432E-10 | 1.400E+ 01 | 9.164E+ 00 |
ACCQPSO | 0.000E+ 00 | 0.000E+ 00 | 0.000E+ 00 | 0.000E+ 00 | 4.441E-16 | 3.451E-31 | 2.908E-14 | 2.262E-14 |
表5
实验结果对比
函数 | 算法 | 最佳值 | 平均值 | 标准差 |
---|---|---|---|---|
GWO | 2.028E-29 | 1.736E-27 | 1.993E-27 | |
WOA | 2.586E-87 | 6.443E-73 | 2.588E-72 | |
SSA1 | 2.648E-08 | 1.303E-07 | 1.164E-07 | |
SSA | 0.000E+00 | 1.235E-51 | 7.886E-51 | |
ACCQPSO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
GWO | 2.342E-17 | 8.124E-17 | 3.938E-17 | |
WOA | 4.813E-23 | 1.668E-20 | 7.640E-20 | |
SSA1 | 4.260E-02 | 2.371E+00 | 1.860E+00 | |
SSA | 1.149E-33 | 5.265E-31 | 3.385E-31 | |
ACCQPSO | 0.000E+00 | 3.631E-14 | 1.260E-13 | |
GWO | 2.635E-09 | 7.353E-06 | 1.336E-06 | |
WOA | 3.682E-06 | 4.626E-05 | 1.673E-06 | |
SSA1 | 2.324E-23 | 1.453E-21 | 7.639E-21 | |
SSA | 2.443E-76 | 4.622E-29 | 1.669E-28 | |
ACCQPSO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
GWO | 7.463E-05 | 7.012E-01 | 3.679E-01 | |
WOA | 7.441E-02 | 4.006E-01 | 2.182E-01 | |
SSA1 | 2.345E-08 | 2.012E-07 | 2.793E-07 | |
SSA | 1.180E-14 | 1.538E-11 | 3.735E-11 | |
ACCQPSO | 8.078E-28 | 2.568E-26 | 6.697E-26 | |
GWO | 4.936E+00 | 2.434E+02 | 3.856E+02 | |
WOA | 5.384E-01 | 4.572E+04 | 2.159E+04 | |
SSA1 | 7.736E+00 | 2.351E+03 | 3.436E+03 | |
SSA | 3.832E-04 | 2.463E+00 | 3.274E+00 | |
ACCQPSO | 7.023E-12 | 3.789E-02 | 6.724E-02 | |
GWO | 2.611E+01 | 2.694E+01 | 6.458E-01 | |
WOA | 2.708E+01 | 2.799E+01 | 4.643E-01 | |
SSA1 | 2.431E+01 | 1.660E+02 | 2.594E+02 | |
SSA | 6.712E-03 | 3.420E+00 | 3.144E-01 | |
ACCQPSO | 4.234E-06 | 2.260E-01 | 2.458E-01 | |
GWO | 6.427E-03 | 1.495E-02 | 4.495E-03 | |
WOA | 1.850E-04 | 4.742E-03 | 4.545E-03 | |
SSA1 | 3.753E-04 | 6.483E-02 | 7.394E-02 | |
SSA | 5.836E-05 | 4.493E-04 | 4.357E-04 | |
ACCQPSO | 1.320E-05 | 1.603E-04 | 1.171E-04 | |
GWO | 4.314E-02 | 1.794E-01 | 5.151E-02 | |
WOA | 3.826E-04 | 1.960E-03 | 8.779E-04 | |
SSA1 | 6.170E-02 | 1.766E-01 | 6.366E-02 | |
SSA | 8.348E-04 | 1.705E-03 | 1.403E-03 | |
ACCQPSO | 1.455E-04 | 8.092E-04 | 4.409E-04 | |
GWO | 3.023E-04 | 5.639E-04 | 3.344E-04 | |
WOA | 7.047E-06 | 4.585E-05 | 4.233E-05 | |
SSA1 | 3.143E-03 | 5.486E+00 | 2.639E+00 | |
SSA | 1.733E-24 | 1.284E-22 | 5.315E-22 | |
ACCQPSO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
GWO | 1.230E-02 | 3.400E-02 | 1.372E-02 | |
WOA | 4.555E-03 | 2.942E-02 | 4.120E-02 | |
SSA1 | 2.614E+00 | 6.731E+00 | 3.705E+00 | |
SSA | 2.387E-16 | 9.771E-13 | 3.221E-12 | |
ACCQPSO | 0.000E+00 | 1.628E-28 | 3.936E-28 | |
GWO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
WOA | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
SSA1 | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
SSA | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
ACCQPSO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
GWO | 0.000E+00 | 3.220E-03 | 8.209E-03 | |
WOA | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
SSA1 | 6.555E-04 | 1.303E-02 | 1.250E-02 | |
SSA | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
ACCQPSO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
GWO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
WOA | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
SSA1 | 0.000E+00 | 3.550E-03 | 4.239E-03 | |
SSA | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
ACCQPSO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
GWO | 0.000E+00 | 3.175E+00 | 4.446E+00 | |
WOA | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
SSA1 | 2.336E+01 | 5.184E+01 | 2.078E+01 | |
SSA | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
ACCQPSO | 0.000E+00 | 0.000E+00 | 0.000E+00 | |
GWO | 4.441E-16 | 4.441E-16 | 3.451E-31 | |
WOA | 4.441E-16 | 4.441E-16 | 3.451E-31 | |
SSA1 | 2.043E-01 | 2.833E+00 | 1.209E+00 | |
SSA | 4.441E-16 | 4.441E-16 | 3.451E-31 | |
ACCQPSO | 4.441E-16 | 4.441E-16 | 3.451E-31 | |
GWO | 7.551E-14 | 1.022E-13 | 1.670E-14 | |
WOA | 8.882E-16 | 4.530E-15 | 2.955E-15 | |
SSA1 | 9.311E-01 | 2.570E+00 | 1.943E+00 | |
SSA | 8.882E-16 | 8.882E-16 | 0.000E+00 | |
ACCQPSO | 4.441E-16 | 2.908E-14 | 2.262E-14 |
[1] | MIRJALILI S. Evolutionary Algorithms and Neural Networks: Genetic Algorithm[M]. Heidelberg: Springer, 2019. |
[2] | NADIMI-SHAHRAKI M H, TAGHIAN S, MIRJALILI S. An Improved Grey Wolf Optimizer for Solving Engineering Problems[J]. Expert Systems with Applications, 2021, 166: 113917. |
[3] | ZHANG Chenglong, DING Shifei. A Stochastic Configuration Network Based on Chaotic Sparrow Search Algorithm[J]. Knowledge-Based Systems, 2021, 220: 106924. |
[4] | JIANG Yufei, XU Xianze, XU Fengqiu, et al. Multi-Strategy Fusion Improved Adaptive Mayfly Algorithm[EB/OL]. (2022-10-12)[2023-10-01]. https://bhxb.buaa.edu.cn/bhzk/cn/article/doi/10.13700/j.bh.1001-5965.2022.0492. |
蒋宇飞, 许贤泽, 徐逢秋, 等. 多策略融合改进的自适应蜉蝣算法[EB/OL]. (2022-10-10)[2023-10-01]. https://bhxb.buaa.edu.cn/bhzk/cn/article/doi/10.13700/j.bh.1001-5965.2022.0492. | |
[5] | LI Dahai, ZHAN Meixin, WANG Zhendong. Improved Sparrow Search Algorithm with Mixed Strategy and Its Application[J]. Application Research of Computers, 2023, 40 (2): 404-412. |
李大海, 詹美欣, 王振东. 混合策略改进的麻雀搜索算法及其应用[J]. 计算机应用研究, 2023, 40(2):404-412. | |
[6] | GUAN Renchu, HE Baorun, LIANG Yanchun, et al. Particle Swarm Optimization Algorithm Based on Kinship Selection[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(8): 1842-1849. |
管仁初, 贺宝润, 梁艳春, 等. 基于亲缘关系选择的粒子群优化算法[J]. 吉林大学学报(工学版), 2022, 52(8):1842-1849. | |
[7] | NING Zhongzheng, HE Xu, YANG Xiaoyong, et al. Sine Cosine Algorithm Embedded with Differential Evolution and Inertia Weight[J]. Transducer and Microsystem Technologies, 2022, 41(8): 131-135. |
宁中正, 和煦, 杨小勇, 等. 嵌入差分进化和惯性权重的正弦余弦算法[J]. 传感器与微系统, 2022, 41(8): 131-135. | |
[8] | TANG Yanqiang, LI Chenghai, SONG Yafei, et al. Adaptive Mutation Sparrow Search Optimization Algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3): 681-692. |
唐延强, 李成海, 宋亚飞, 等. 自适应变异麻雀搜索优化算法[J]. 北京航空航天大学学报, 2023, 49(3):681-692. | |
[9] | CARLISLE A, DOZIER G. An Off-the-Shelf PSO[EB/OL]. (2001-01-01)[2023-10-01]. https://www.researchgate.net/publication/216300408_An_off-the-shelf_PSO. |
[10] | ZHOU Shu, PAN Wei, LUO Bin, et al. A Novel Quantum Genetic Algorithm Based on Particle Swarm Optimization Method and Its Application[J]. Acta Electronica Sinica, 2006(5): 897-901. |
周殊, 潘炜, 罗斌, 等. 一种基于粒子群优化方法的改进量子遗传算法及应用[J]. 电子学报, 2006(5):897-901. | |
[11] | SUN Jun, FENG Bin, XU Wenbo. Particle Swarm Optimization with Particles Having Quantum Behavior[C]// IEEE. Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753). New York: IEEE, 2004: 325-331. |
[12] | CHEN Hanwu, ZHU Jianfeng, RUAN Yue, et al. Quantum Particle Swarm Optimization Algorithm with Crossover Operator[J]. Journal of Southeast University(Natural Science Edition), 2016, 46(1): 23-29. |
陈汉武, 朱建锋, 阮越, 等. 带交叉算子的量子粒子群优化算法[J]. 东南大学学报(自然科学版), 2016, 46(1):23-29. | |
[13] | DERRAC J, GARCIA S, MOLINA D, et al. A Practical Tutorial on the Use of Nonparametric Statistical Tests as a Methodology for Comparing Evolutionary and Swarm Intelligence Algorithms[J]. Swarm & Evolutionary Computation, 2011, 1(1): 3-18. |
[14] | CHAKRABORTY S, SAHA A K, SHARMA S, et al. A Novel Enhanced Whale Optimization Algorithm for Global Optimization[J]. Computers & Industrial Engineering, 2021, 153: 107086. |
[15] | BAIRATHI D, GOPALANI D. An Improved Salp Swarm Algorithm for Complex Multi-Modal Problems[J]. Soft Computing, 2021, 25: 10441-10465. |
[16] | YANG Hanyu, LI Xutao, QIANG Wenhao, et al. A Network Traffic Forecasting Method Based on SA Optimized ARIMA-BP Neural Network[J]. Computer Networks, 2021, 193: 108102. |
[17] | NING Yu, JIN Yongping, PENG Youduo, et al. Small Obstacle Size Prediction Based on a GA-BP Neural Network[J]. Applied Optics, 2022, 61(1): 177-187. |
[18] | WANG Dan, HONG Liang, ZHANG Ce, et al. Prediction Model for Driver Reaction Time Based on PSO-BP Neural Network Model[EB/OL].(2022-01-01)[2023-10-01].https://doi.org/10.1155/2022/6100702. |
[19] | LECUN Y, BENGIO Y, HINTON G. Deep Learning[J]. Nature, 2015, 521(7553): 436-444. |
[20] | LI Hongtao, ZHOU Tuo. A Survey on Deep Learning for Neural Network-Based Data Classification[J]. Neural Computing and Applications, 2017, 28(5), 1047-1056. |
[21] | RUDER S. An Overview of Gradient Descent Optimization Algorithms[EB/OL]. (2017-06-15)[2023-10-01]. https://doi.org/10.48550/arXiv.1609.04747. |
[22] | CNCERT/CC. Weekly Report on Network Security Information from 2012 to 2022[EB/OL]. (2022-06-15)[2023-10-01]. https://www.cert.org.cn/publish/main/index.html. |
中国互联网信息中心. 2012至2022年网络安全信息与动态周报[EB/OL]. (2022-06-15)[2023-10-01]. https://www.cert.org.cn/publish/main/index.html. | |
[23] | JIANG Wanfei. Research on Network Security Posture Prediction Based on Multi-Model Weight Extraction and Fusion[D]. Lanzhou: Lanzhou University of Technology, 2016. |
姜万菲. 基于多模型权重提取与融合的网络安全态势预测研究[D]. 兰州: 兰州理工大学, 2016. | |
[24] |
SUN Junfeng, LI Chenghai, CAO Bo. Network Security Situation Prediction Based on TCN-BiLSTM[J]. Systems Engineering and Electronics, 2023, 45(11): 3671-3679.
doi: 10.12305/j.issn.1001-506X.2023.11.36 |
孙隽丰, 李成海, 曹波. 基于TCN-BiLSTM的网络安全态势预测[J]. 系统工程与电子技术, 2023, 45(11):3671-3679.
doi: 10.12305/j.issn.1001-506X.2023.11.36 |
|
[25] | WANG Gang. Comparative Study on Different Neural Networks for Network Security Situation Prediction[J]. Security and Privacy, 2021, 4(1): e138. |
[26] | ZHANG Li, WANG Fulin, SUN Tian, et al. A Constrained Optimization Method Based on BP Neural Network[J]. Neural Computing and Applications, 2018, 29: 413-421. |
[27] | DING Shifei, SU Chunyang, YU Junzhao. An Optimizing BP Neural Network Algorithm Based on Genetic Algorithm[J]. Artificial Intelligence Review, 2011, 36: 153-162. |
[28] | REN Chao, AN Ning, WANG Jianzhou, et al. Optimal Parameters Selection for BP Neural Network Based on Particle Swarm Optimization: A Case Study of Wind Speed Forecasting[J]. Knowledge-Based Systems, 2014, 56: 226-239. |
[29] | YIN Fei, HAO Yong, XIAO Taoli, et al. The Prediction of Pile Foundation Buried Depth Based on BP Neural Network Optimized by Quantum Particle Swarm Optimization[J]. Advances in Civil Engineering, 2021, 2021: 1-15. |
[30] | XU Shuang, XU Xiaodi, JIA Weitao, et al. Microstructure-Property Mapping Modeling for AZ31 Alloy Rolling Deformation Using Improved PSO-BP Neural Network[J]. Journal of Materials Research and Technology, 2023, 25: 2127-2139. |
[1] | 佟晓筠, 苏煜粤, 张淼, 王翥. 基于混沌和改进广义Feistel结构的轻量级密码算法[J]. 信息网络安全, 2022, 22(8): 8-18. |
[2] | 张昱, 孙光民, 翟鹏, 李煜. 一种基于切比雪夫混沌映射的可证明安全的溯源认证协议[J]. 信息网络安全, 2022, 22(12): 25-33. |
[3] | 余晴, 郑崇辉, 杜晔. 面向云平台虚拟层的安全态势评估关键技术研究[J]. 信息网络安全, 2020, 20(7): 53-59. |
[4] | 杨威超, 郭渊博, 钟雅, 甄帅辉. 基于设备型号分类和BP神经网络的物联网流量异常检测[J]. 信息网络安全, 2019, 19(12): 53-63. |
[5] | 张雪博, 刘敬浩, 付晓梅. 基于改进Logistic回归算法的抗Web DDoS攻击模型的设计与实现[J]. 信息网络安全, 2017, 17(6): 62-67. |
[6] | 魏子令, 赵宝康, 苏金树. 人本感知网络中用户位置信息保护的研究[J]. 信息网络安全, 2016, 16(8): 6-11. |
[7] | 王闻博, 程庆丰, 陆思奇, 赵进华. 一种基于混沌映射的秘密握手协议[J]. 信息网络安全, 2015, 15(11): 40-46. |
[8] | . 基于混沌和比特级置乱的并行图像加密算法[J]. , 2014, 14(4): 40-. |
[9] | 张智威;孙子文;丛琳;朱凯. 基于Markov-BP神经网络的手写签名手机身份认证技术[J]. , 2013, 13(9): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||