信息网络安全 ›› 2023, Vol. 23 ›› Issue (2): 19-25.doi: 10.3969/j.issn.1671-1122.2023.02.003
收稿日期:
2022-04-24
出版日期:
2023-02-10
发布日期:
2023-02-28
通讯作者:
赵佳
E-mail:zhaojia@bjtu.edu.cn
作者简介:
赵佳(1980—),女,内蒙古,副教授,博士,主要研究方向为网络空间安全、可信计算、隐私保护|高塔(1996—),女,河北,硕士研究生,主要研究方向为网络空间安全|张建成(1973—),男,河南,副研究员,硕士,主要研究方向为密码技术、物联网安全、信息系统咨询与信息标准化
基金资助:
ZHAO Jia1,2(), GAO Ta1,2, ZHANG Jiancheng3,4
Received:
2022-04-24
Online:
2023-02-10
Published:
2023-02-28
Contact:
ZHAO Jia
E-mail:zhaojia@bjtu.edu.cn
摘要:
文章提出一种基于改进贝叶斯网络的高维数据本地差分隐私方法,首先通过数据源差分隐私保护算法对用户端数据集进行扰动,生成扰动数据集,保护本地原始数据集隐私;然后通过改进的贝叶斯网络将高维数据集降维为多个低维属性集合;最后合成新数据集,使用人工蜂群算法对贝叶斯网络结构进一步改进。实验结果表明,该方法在数据实用性方面具有优势,且得到的贝叶斯网络收敛性更好。
中图分类号:
赵佳, 高塔, 张建成. 基于改进贝叶斯网络的高维数据本地差分隐私方法[J]. 信息网络安全, 2023, 23(2): 19-25.
ZHAO Jia, GAO Ta, ZHANG Jiancheng. Method of Local Differential Privacy Method for High-Dimensional Data Based on Improved Bayesian Network[J]. Netinfo Security, 2023, 23(2): 19-25.
[1] | DWORK C. Differential Privacy[M]. Heidelberg: Springer, 2006. |
[2] | DWORK C, ROTH A. The Algorithmic Foundations of Differential Privacy[EB/OL]. [2020-12-10]. https://www.microsoft.com/en-us/research/publication/algorithmic-foundations-differential-privacy/. |
[3] |
SWEENEY L. k-Anonymity: a Model for Protecting Privacy[J]. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2002, 10(5): 557-570.
doi: 10.1142/S0218488502001648 URL |
[4] | MACHANVAJJHALA A, KIFER D, GEHRKE J. L-Diversity: Privacy beyond k-Anonymity[J]. ACM Trans on Knowledge Discovery and from Data, 2007, 1(1): 1-52. |
[5] |
SWEENEY L. Achieving k-Anonynity Privacy Protection Using Generalization and Suppression[J]. Fuzziness and Knowledge-Based Systems, 2002, 10(5): 571-588.
doi: 10.1142/S021848850200165X URL |
[6] | LI Ninghui, LI Tiancheng, VENKATASUBRAMANIAN S. t-Closeness: Privacy beyond k-Anonymity and l-Diversity[C]// IEEE. 23rd IEEE International Conference on Data Engineering. New York: IEEE, 2007: 106-115. |
[7] | WONG R C W, LI Jiuyong, FU A W C, et al. (a,k)-Anonymity: An Enhanced k-Anonymity Model for Privacy Preserving Data Publishing[C]// ACM. 12th ACMSIGKDD International Conference on Knowledge Discovery and Data Mining(KDD). New York:ACM, 2006: 754-759. |
[8] | DWORK C, MCSHERRY F, NISSIM K, et al. Calibrating Noise to Sensitivity in Private Data Analysis[C]// IACR. 3rd Theory of Cryptography. Heidelberg: Springer, 2006: 265-284. |
[9] | ROTH A, ROUGHGARDEN T. Interactine Privacy via the Median Mechanism[C]// ACM. 42nd ACM Symposium on Theory of Computing. New York: ACM, 2010: 765-774. |
[10] | HAY M, RASTOGI V, MIKLAU G, et al. Boosting the Accuracy of Differentially Private Histograms through Consistency[J]. VLDB Endowment, 2010, 3(1): 1021-1032. |
[11] |
XU Jia, ZHANG Zhenjie, XIAO Xiaokui. Differentially Private Histogram Publication[J]. The VLDB Journal, 2013, 22(6): 797-822.
doi: 10.1007/s00778-013-0309-y URL |
[12] | ZHANG Xiaojian, SHAO Chao, MENG Xiaofeng. Accurate Histogram Release under Differential Privacy[J]. Journal of Computer Research and Development, 2016, 53(5): 1106-1117. |
张啸剑, 邵超, 孟小峰. 差分隐私下一种精确直方图发布方法[J]. 计算机研究与发展, 2016, 53(5):1106-1117. | |
[13] | YANG Geng, XIA Chunting, BAI Yunlu. Algorithm for Differential Privacy Histogram for Real-Time Data Flow[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 2018, 38(2): 69-77. |
杨庚, 夏春婷, 白云璐. 面向实时数据流的差分隐私直方图发布技术[J]. 南京邮电大学学报:自然科学版, 2018, 38(2):69-77. | |
[14] | XU Chugui, REN Jun, ZHANG Yaoxue, et al. DPPro: Differentially Private High-Dimensional Data Release via Random Projection[J]. IEEE Transactions on Information Forensics & Security, 2017, 12(12): 3081-3093. |
[15] | CHEN Rui, MOHAMMED N, FUNG B, et al. Publishing SetValued Data via Differential Privacy[J]. VLDB Endowment, 2011, 4(11): 1087-1098. |
[16] | QARDAJI W, YANGWeining, LINinghui. Priview: Practical Differentially Private Release of Marginal Contingency Tables[C]// ACM. 2014 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2014, 1435-1446. |
[17] |
REN Xuebin, YU C M, YU Weiren, et al. LoPub: High-Dimensional Crowdsourced Data Publication with Local Differential Privacy[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(9): 2151-2166.
doi: 10.1109/TIFS.2018.2812146 URL |
[18] | DWORK C, KENTHAPADI K, MCSHERRY F, et al. Ourdata, Ourselves: Privacy via Distributed Noise Generation[C]// IACR. 24th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Heidelberg: Springer, 2006: 486-503. |
[19] | XIAO Biao, YAN Hongqiang, LUO Haining, et al. Research on Improvement of Bayesian Network Privacy Protection Algorithm Based on Differential Privacy[J]. Netinfo Security, 2020, 20(11): 75-86. |
肖彪, 闫宏强, 罗海宁, 等. 基于差分隐私的贝叶斯网络隐私保护算法的改进研究[J]. 信息网络安全, 2020, 20(11):75-86. | |
[20] | XU Chugui, REN Ju, ZHANG Deyu. Distilling at the Edge: A Local Differential Privacy Obfuscation Framework for IoT Data Analytics[J]. IEEE Communications Magazine, 2018, 56(8): 20-25. |
[21] | ZHANG Jiacheng, PENG Jia, WANG Lei. A Graph Information Collection Method Based on Local Differential Privacy in Big Data Environment[J]. Netinfo Security, 2020, 20(6): 44-56. |
张佳程, 彭佳, 王雷. 大数据环境下的本地差分隐私图信息收集方法[J]. 信息网络安全, 2020, 20(6):44-56. | |
[22] | LARRANNAGA P, POZA M, YURRAMENDI Y. Structure Learning of Bayesian Networks by Genetic Algorithms: A Performance Analysis of Control Parameters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(9): 921-926. |
[23] | ZHENG Zehao. Research on State Evaluation Method of Intelligent Electric EnergyMeter Based on Bayesian Network and Emseble Learning[D]. Changchun: Jilin University, 2020. |
郑泽豪. 基于贝叶斯网和集成学习的智能电能表状态评价方法研究[D]. 长春: 吉林大学, 2020. |
[1] | 顾兆军, 杨睿, 隋翯. 面向网络架构的系统攻击面建模方法[J]. 信息网络安全, 2022, 22(3): 29-38. |
[2] | 罗文华, 张耀文. 基于贝叶斯网络的电信网络诈骗受害人特征分析[J]. 信息网络安全, 2021, 21(12): 25-30. |
[3] | 朱容辰, 李欣, 林小暖. 基于贝叶斯网络的视频专网安全风险分析方法[J]. 信息网络安全, 2021, 21(12): 91-101. |
[4] | 张佳程, 彭佳, 王雷. 大数据环境下的本地差分隐私图信息收集方法[J]. 信息网络安全, 2020, 20(6): 44-56. |
[5] | 肖彪, 闫宏强, 罗海宁, 李炬成. 基于差分隐私的贝叶斯网络隐私保护算法的改进研究[J]. 信息网络安全, 2020, 20(11): 75-86. |
[6] | 何一青. 一种基于有向二分图模型和贝叶斯网络的入侵检测方法[J]. , 2012, 12(8): 0-0. |
阅读次数 | |||||||||||||||||||||||||
全文 117
|
|
||||||||||||||||||||||||
摘要 310
|
|
||||||||||||||||||||||||