信息网络安全 ›› 2022, Vol. 22 ›› Issue (4): 67-76.doi: 10.3969/j.issn.1671-1122.2022.04.008

• 技术研究 • 上一篇    下一篇

基于联邦随机森林的船舶AIS轨迹分类算法

吕国华1, 胡学先1, 杨明1, 徐敏2()   

  1. 1.战略支援部队信息工程大学,郑州 450001
    2.锦州医科大学,锦州 121000
  • 收稿日期:2021-10-29 出版日期:2022-04-10 发布日期:2022-05-12
  • 通讯作者: 徐敏 E-mail:powerhua@163.com
  • 作者简介:吕国华(1989—),男,吉林,硕士,主要研究方向为机器学习和隐私保护|胡学先(1982—),男,湖北,副教授,博士,主要研究方向为大数据安全和隐私保护|杨明(1994—),男,内蒙古,硕士研究生,主要研究方向为大数据安全和隐私保护|徐敏(1989—),女,辽宁,讲师,硕士,主要研究方向为教育与医疗数据
  • 基金资助:
    国家自然科学基金(62172433);国家自然科学基金(61872449);国家自然科学基金(61772548)

Ship AIS Trajectory Classification Algorithm Based on Federated Random Forest

LYU Guohua1, HU Xuexian1, YANG Ming1, XU Min2()   

  1. 1. Strategic Support Force Information Engineering University, Zhengzhou 450001, China
    2. Jinzhou Medical University, Jinzhou 121000, China
  • Received:2021-10-29 Online:2022-04-10 Published:2022-05-12
  • Contact: XU Min E-mail:powerhua@163.com

摘要:

为了提升船舶AIS轨迹数据的分类效果、实现多权属数据安全联合数据挖掘,文章提出一种基于联邦随机森林的船舶AIS轨迹分类算法,利用BCP同态加密算法构造平均隐私保护协议,解决联邦学习中多参与方安全协同训练决策树问题。文章通过分析船舶AIS轨迹数据提取最优轨迹特征,并使用相应的特征向量作为联邦学习模型的输入,实现对渔船、客船、货船和油轮4类典型船舶的联邦分类。从准确性和有效性两方面进一步进行验证,结果表明该算法能够在保证数据隐私安全的前提下实现良好的分类效果,降低了参与方客户端的计算开销,实现多权属数据安全联合数据挖掘。同时,此研究成果可应用于船舶航迹模式识别和航迹分析预测等领域。

关键词: 联邦学习, AIS轨迹, 随机森林, 同态加密

Abstract:

To improve the classification performance of the algorithm on AIS trajectory data, and combine multi-participants data with security data mining in the process of federal training, this article proposed an algorithm named ship AIS trajectory classification algorithm based on federated random forest. By integrating the BCP homomorphic encryption algorithm to design a protection with average privacy-preserving, it solved the problem of multi-participants securely training decision tree on federated learning. The algorithm analyzed the ship’s trajectory data and extracted the optimal trajectory features, which could be used as the input of the model. It realized the federal classification of four typical ships, namely fishing boat, passenger ship, cargo ship and oil tanker. Further experiment from two aspects of accuracy and efficiency shows that, besides its security advantage, the algorithm performs well in terms of classification effect, reduces the computation overhead of the participant client, and realizes the security and federal data mining by multi-participants. At the same time, it can be applied to ship trajectory identification and ship navigation risk analysis.

Key words: federated learning, AIS trajectory, random forest, homomorphic encryption

中图分类号: