信息网络安全 ›› 2021, Vol. 21 ›› Issue (6): 45-51.doi: 10.3969/j.issn.1671-1122.2021.06.006
收稿日期:
2020-11-26
出版日期:
2021-06-10
发布日期:
2021-07-01
通讯作者:
李丹
E-mail:lidansusu007@163.com
作者简介:
李丹(1989—),女,山西,讲师,博士,主要研究方向为量子计算、量子密码|燕婷(1995—),女,河南,硕士研究生,主要研究方向为量子图像处理|郭瑞(1984—),男,河南,副教授,博士,主要研究方向为信息安全
基金资助:
LI Dan1(), YAN Ting1, GUO Rui2
Received:
2020-11-26
Online:
2021-06-10
Published:
2021-07-01
Contact:
LI Dan
E-mail:lidansusu007@163.com
摘要:
机密图像需要尽可能安全地加密传输。针对大多数经典图像加密算法只提供计算安全的现状,文章提出了一种基于交替量子漫步的量子彩色图像加密算法。该算法提供了一个无条件安全的量子图像加密方案,理论上可以抵抗量子计算机攻击。文章方案的量子线路复杂度为O(n+q),与经典图像加密所需要的O(2 2 n)复杂度相比,效率有指数级提升。与其他量子图像加密方案相比,文章方案在安全性和资源消耗上有较大优势,在未来有较大的应用潜力。
中图分类号:
李丹, 燕婷, 郭瑞. 基于交替量子漫步的量子彩色图像加密算法[J]. 信息网络安全, 2021, 21(6): 45-51.
LI Dan, YAN Ting, GUO Rui. Quantum Color Image Encryption Algorithm Based on Alternating Quantum Walk[J]. Netinfo Security, 2021, 21(6): 45-51.
表1
本文方案与其他量子图像加密算法的比较
文献 | 加密 方法 | 加密算法的安全性 | 加密算法的量子线路复杂度 | 计算 平台 | 传输 信道 | 加密 结果 |
---|---|---|---|---|---|---|
本文方案 | 一次性密码本 | 无条件安全 | $O(n+q)$ | 量子计算机 | 量子 信道 | 最大混合态、无条件安全 |
文献[ | 一次性密码本 | 无条件安全 | $O(nq)$ | 量子计算机 | / | 能抵抗大部分经典攻击 |
文献[ | 一次性密码本 | 无条件安全 | $O(nq)$ | 量子计算机 | / | 能抵抗大部分经典攻击 |
文献[ | 双随机相位加密、置乱集 | 计算 安全 | $\gg O(nq)$ | 量子计算机 | / | 能抵抗大部分经典攻击 |
文献[ | Arnold置乱、量子小波变换 | 计算 安全 | $\gg O(nq)$ | 量子计算机 | / | 能抵抗大部分经典攻击 |
[1] |
WANG Xingyuan, GAO Suo. Image Encryption Algorithm Based on the Matrix Semi-tensor Product with a Compound Secret Key Produced by a Boolean Network[J]. Information Sciences, 2020,539(10):195-214.
doi: 10.1016/j.ins.2020.06.030 URL |
[2] | XU Qiaoyun, SUN Kehui, HE Shaobo, et al. An Effective Image Encryption Algorithm Based on Compressive Sensing and 2D-SLIM[EB/OL].https://xueshu.baidu.com/usercenter/paper/show?paperid=166r0jc01r1v08a094630270uh067807&site=xueshu_se, 2020 -11-01. |
[3] | YAN Fei, ILIYASU A M, LE P Q. Quantum Image Processing: a Review of Advances in Its Security Technologies[EB/OL]. https://xueshu.baidu.com/usercenter/paper/show?paperid=5b7811d6c0757a4a14ca49cb34758dc1&site=xueshu_se, 2017 -06-29. |
[4] | YAN Fei, VENEGAS-ANDRACA S E. Quantum Image Processing[M]. Berlin: Springer, 2020. |
[5] | VENEGAS-ANDRACA S E, BOSE S. Storing, Processing, and Retrieving an Image Using Quantum Mechanics[J]. Proceedings of SPIE: Quantum Information and Computation, 2003,25(8):137-147. |
[6] |
YAN Fei, ILIYASU A M, VENEGAS-ANDRACA S E. A Survey of Quantum Image Representations[J]. Quantum Information Processing, 2016,15(12):1-35.
doi: 10.1007/s11128-015-1195-6 URL |
[7] |
MASTRIANI M. Quantum Image Processing?[J]. Quantum Information Processing, 2017,16(1):1-42.
doi: 10.1007/s11128-016-1481-y URL |
[8] | VLASOV A. Y. Quantum Computations and Image Recognition[EB/OL]. ,2020 -11-09. |
[9] |
ZHOU Yang, ZHOU Rigui, LIU Xingao, et al. A Quantum Image Watermarking Scheme Based on Two-bit Superposition[J]. International Journal of Theoretical Physics, 2019,58(3):950-968.
doi: 10.1007/s10773-018-3987-9 URL |
[10] |
SONG Xianhua, WANG Shen, LIU Shuai, et al. A Dynamic Watermarking Scheme for Quantum Images Using Quantum Wavelet Transform[J]. Quantum Information Processing, 2013,12(12):3689-3706.
doi: 10.1007/s11128-013-0629-2 URL |
[11] |
SONG Xianhua, WANG Shen, EI-LATIF A A A, et al. Dynamic Watermarking Scheme for Quantum Images Based on Hadamard Transform[J]. Multimedia Systems, 2014,20(4):379-388.
doi: 10.1007/s00530-014-0355-3 URL |
[12] |
MIYAKE S, NAKAMAE K A Quantum Watermarking Scheme Using Simple and Small-scale Quantum Circuits[J]. Quantum Information Processing, 2016,15(5):1849-1864.
doi: 10.1007/s11128-016-1260-9 URL |
[13] | El-LATIF A A A, ADB-EL-ATTY B, VENEGAS-ANDRACA S E. Controlled Alternate Quantum Walk-based Pseudo-random Number Generator and Its Application to Quantum Color Image Encryption[EB/OL]. , 2019-12-01. |
[14] | ADB-EL-ATTY B, El-LATIF A A A, VENEGAS-ANDRACA S.E. An Encryption Protocol for NEQR Images Based on One-particle Quantum Walks on a Circle[EB/OL]. , 2019 -09-01. |
[15] | DU Shiping, QIU Daowen, MATEUS P, et al. Enhanced Double Random Phase Encryption of Quantum Images[EB/OL]. , 2019 -03-01. |
[16] | HU Wenwen, ZHOU Rigui, LUO Jia, et al. Quantum Image Encryption Algorithm Based on Arnold Scrambling and Wavelet Transforms[EB/OL]. , 2020-11-16. |
[17] | HU Wenwen, ZHOU Rigui, LIU Xingao, et al. Quantum Image Steganography Algorithm Based on Modified Exploiting Modification Direction Embedding[EB/OL]. , 2020 -05-18. |
[18] |
El-LATIF A A A, ABD-EL-ATTY B, HOSSAIN M S, et al. Efficient Quantum Information Hiding for Remote Medical Image Sharing[J]. IEEE Access, 2018,6(3):21075-21083.
doi: 10.1109/Access.6287639 URL |
[19] |
ZHANG Yi, LU Kai, GAO Yinghui, et al. NEQR: A Novel Enhanced Quantum Representation of Digital Images[J]. Quantum Information Processing, 2013,12(8):2833-2860.
doi: 10.1007/s11128-013-0567-z URL |
[20] | SANG Jianzhi, WANG Shen, LI Qiong. A Novel Quantum Representation of Color Digital Images[EB/OL]. https://xueshu.baidu.com/usercenter/paper/show?paperid=24f4fb861415097a4d84e39cb265ddfd&site=xueshu_se, 2020 -09-19. |
[21] |
VENEGAS-ANDRACA S E. Quantum Walks: A Comprehensive Review[J]. Quantum Information Processing, 2012,11(5):1015-1106.
doi: 10.1007/s11128-012-0432-5 URL |
[22] | LOVETT N B, COOPER S, EVERITT M, et al. Universal Quantum Computation Using the Discrete-time Quantum Walk[EB/OL]. , 2009-10-06. |
[23] | AMBAINIS A. Quantum Walk Algorithm for Element Distinctness[EB/OL]. https://xueshu.baidu.com/usercenter/paper/show?paperid=6e13362948a5a155678e714f176e41c4&site=xueshu_se, 2020-09-25. |
[24] | BERRY S D, WANG J B. Two-particle Quantum Walks: Entanglement and Graph Isomorphism Testing[EB/OL].https://xueshu.baidu.com/usercenter/paper/show?paperid=d5462ec70d3eab1b06d32c4408b605e0 , 2011 -04-14. |
[25] |
LI Dan, ZHANG Jie, GUO Fenzhou, et al. Discrete-time Interacting Quantum Walks and Quantum Hash Schemes[J]. Quantum Information Processing, 2013,12(3):1501-1513.
doi: 10.1007/s11128-012-0421-8 URL |
[26] | YANG Yuguang, ZHAO Qianqian. Novel Pseudo-random Number Generator Based on Quantum Random Walks[EB/OL]. https://xueshu.baidu.com/usercenter/paper/show?paperid=86f40d188cfdbb078dac22c7f2480251, 2020 -09-28. |
[27] | YANG Yuguang, XU Peng, YANG Rui, et al. Quantum Hash Function and Its Application to Privacy Amplification in Quantum Key Distribution, Pseudo-random Number Generation and Image Encryption[EB/OL]. , 2020 -10-25. |
[28] | LI Dan, YANG Yuguang, BI Jinglin, et al. Controlled Alternate Quantum Walks based Quantum Hash Function[EB/OL]. , 2018-01-09. |
[29] | DI FRANCO C, MC GETTRICK M, MACHIDA T, et al. Alternate Two-dimensional Quantum Walk with a Single-qubit Coin[EB/OL]. , 2011-10-25. |
[30] | BOYKIN P O, ROYCHOWDHURY V. Optimal Encryption of Quantum Bits[J]. Physical Review A, 2003,67(4):645-648. |
[31] |
BARENCO A, BENNETT C H, CLEVE R, et al. Elementary Gates for Quantum Computation[J]. Physical Review A, 1995,52(5):3457-3488.
doi: 10.1103/PhysRevA.52.3457 URL |
[1] | 易宗向;王明兴. 基于PRNG的WSN密钥预分配方案[J]. , 2012, 12(3): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||