信息网络安全 ›› 2018, Vol. 18 ›› Issue (8): 34-42.doi: 10.3969/j.issn.1671-1122.2018.08.005

• • 上一篇    下一篇

基于语义空间匿名的轨迹移动模式挖掘算法

左开中1,2(), 陶健1,2, 曾海燕1,2, 孙丽萍1,2   

  1. 1. 安徽师范大学计算机与信息学院,安徽芜湖 241002
    2. 网络与信息安全安徽省重点实验室,安徽芜湖 241002
  • 收稿日期:2018-03-10 出版日期:2018-08-20 发布日期:2020-05-11
  • 作者简介:

    作者简介:左开中(1974—),男,安徽,教授,博士,主要研究方向为机器学习、隐私保护;陶健(1989—),男,安徽,硕士研究生,主要研究方向为数据挖掘、隐私保护;曾海燕(1993—),女,安徽,硕士研究生,主要研究方向为数据挖掘、隐私保护;孙丽萍(1980—),女,安徽,教授,博士,主要研究方向为空间数据处理、智能计算。

  • 基金资助:
    国家自然科学基金[61602009];安徽省自然科学基金[1608085MF145]

Algorithm for Trajectory Movement Pattern Mining Based on Semantic Space Anonymity

Kaizhong ZUO1,2(), Jian TAO1,2, Haiyan ZENG1,2, Liping SUN1,2   

  1. 1. School of Computer and Information, Anhui Normal University, Wuhu Anhui 241002, China
    2. Anhui Provincial Key Laboratory of Network and Information Security, Wuhu Anhui 241002, China
  • Received:2018-03-10 Online:2018-08-20 Published:2020-05-11

摘要:

针对离线场景下利用轨迹数据挖掘用户移动模式时会泄露用户敏感位置隐私问题,文章利用兴趣点的地理空间分布,提出一种基于语义空间匿名的轨迹移动模式挖掘算法来抵御攻击者地图匹配攻击或语义推断攻击,同时实现用户移动模式的挖掘。该算法首先利用网格划分技术对城区进行均匀网格划分产生网格区域;然后利用网格区域中兴趣点的位置分布和语义差异度对轨迹停留点进行空间匿名以满足(k,l)隐私模型;最后借鉴经典模式挖掘PrefixSpan算法思想对匿名轨迹数据集进行频繁移动模式的挖掘。理论分析和仿真实验验证了算法的安全性和有效性,与现有空间匿名的轨迹移动模式挖掘算法MCSPP相比,该算法不仅降低平均信息损失度,同时挖掘的频繁移动模式空间语义解释性更高。

关键词: 轨迹, 停留点, 兴趣点, (k, l)隐私模型, 移动模式挖掘

Abstract:

Aiming at the mining user movement patterns using trajectory data in offline scenario to leaks the privacy problems of the user sensitive location, using the geographic spatial distribution of points of interest, an anonymous trajectory-based moving pattern mining algorithm based on semantic space is proposed to defend against attacker map matching attacks or semantic inference attacks while implementing user mobility patterns mining. The algorithm first uses grid division technology to divide the urban area into uniform grids to generate grid areas. Then use the location distribution and semantic difference degree of the interest points in the grid area to spatially annotate the trajectory stay points to satisfy the (k,l) privacy model. Finally, the idea of mining PrefixSpan algorithm based on classical model mining is used to mine frequent moving patterns of anonymous trajectory datasets. Theoretical analysis and simulation experiments verify the security and effectiveness of the algorithm. Compared with MCSPP, an existing space-based anonymous trajectory moving pattern mining algorithm, this algorithm not only reduces the average information loss degree, but also has a higher spatial interpretation of the frequent movement patterns of mining.

Key words: trajectory, stay point, points of interest, (k, l) privacy model, movement pattern mining

中图分类号: