信息网络安全 ›› 2017, Vol. 17 ›› Issue (11): 67-73.doi: 10.3969/j.issn.1671-1122.2017.11.011

• • 上一篇    下一篇

基于Intent过滤的应用安全加固方案

陆德冰, 崔浩亮, 张文, 牛少彰()   

  1. 北京邮电大学智能通信软件与多媒体北京市重点实验室,北京 100876
  • 收稿日期:2017-08-30 出版日期:2017-11-20 发布日期:2020-05-12
  • 作者简介:

    作者简介: 陆德冰(1992—),男,江苏,硕士研究生,主要研究方向为移动安全技术;崔浩亮(1987—),男,河北,博士研究生,主要研究方向为信息安全、漏洞挖掘等;张文(1981—),男,四川,博士研究生,主要研究方向信息安全、移动安全技术;牛少彰(1963—),男,北京,教授,博士,主要研究方向为网络信息安全、网络攻防技术、软件安全、信息隐藏技术等。

  • 基金资助:
    国家自然科学基金[61370195];国家自然科学基金联合基金[U1536121]

Application Security Reinforcement Scheme Based on Intent Filter

Debing LU, Haoliang CUI, Wen ZHANG, Shaozhang NIU()   

  1. Beijing Key Lab of Intelligent Telecommunication Software and Multimedia, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2017-08-30 Online:2017-11-20 Published:2020-05-12

摘要:

Intent测试是Android应用发布前的重要测试环节,当测试用例覆盖不全时,会将潜在风险滞留于应用中。文章针对应用未对Intent通信进行全面有效的安全验证而导致存在潜在风险,提出了一种基于决策树提取过滤规则的自学习式的Android应用Intent安全过滤加固方案。该方案无需对源码或安装包进行修改,只需将应用放置于文章所设计的安全容器中运行。该方案利用决策树算法对相似度高的Intent攻击进行拦截,保护运行时的应用不受恶意Intent的影响。同时,该算法具有自学习的能力,可以根据当前应用的运行状态进行决策树的构造和过滤规则的生成,以适应新的环境变化。实验结果表明,加固方案能够对Intent通信提供有效的安全保障,对应用本身的执行速度和效率影响小,能够使开发人员仅需专注于应用自身的业务逻辑而无需担心Intent通信相关的安全问题。

关键词: Android系统, Intent测试, 决策树, 加固, 过滤

Abstract:

Intent test is an important part before the release of Android applications, when the test case coverage is incomplete, the potential risk will stay in the application. This paper proposes a self-learning Intent filtering reinforcement scheme based on decision tree to extract filtering rules for the potential risks, which caused by the application without comprehensive and effective security verification of Intent communication. There is no need to modify the source or installation package, just to place the application in a safe container designed in this article. The scheme uses the decision tree algorithm to intercept the Intent attack with high similarity, and protect the application of the runtime from malicious Intent. At the same time, the algorithm has the ability of self-learning, according to the running state of current application, it can construct decision tree and generate filtering rules to adapt to the new environmental changes. The experimental results show that the reinforcement scheme can provide effective security for Intent communication, and it has little effect on the speed and efficiency of the application itself, so that the developers can only focus on their own business logic without worrying about the security problems related to Intent communication.

Key words: Android system, Intent test, decision trees, reinforcement, filter

中图分类号: