信息网络安全 ›› 2025, Vol. 25 ›› Issue (4): 564-577.doi: 10.3969/j.issn.1671-1122.2025.04.005

• 专题论文:智能系统安全 • 上一篇    下一篇

基于多维度特征与PageRank优化的恶意网址研判方法研究

王方圆1(), 练智超1, 李千目1, 顾欢欢1, 赵谦2   

  1. 1.南京理工大学网络空间安全学院,南京 210094
    2.清华大学计算机科学与技术系,北京 100084
  • 收稿日期:2024-11-28 出版日期:2025-04-10 发布日期:2025-04-25
  • 通讯作者: 王方圆 ferry.wang@foxmail.com
  • 作者简介:王方圆(1985—),男,江苏,博士研究生,主要研究方向为黑灰产溯源与网络反欺诈对抗|练智超(1983—),男,安徽,教授,博士,主要研究方向为图像处理与模式识别|李千目(1979—),男,安徽,教授,博士,CCF高级会员,主要研究方向为信息技术与网络安全|顾欢欢(1989—),女,江苏,高级工程师,博士研究生,CCF会员,主要研究方向为网络安全技术、大模型安全技术|赵谦(1985—),男,江苏,正高级工程师,博士研究生,CCF会员,主要研究方向为电力系统自动化与工业互联网安全
  • 基金资助:
    江苏省前沿技术研发计划(BF2024071);江苏省科技厅重点研发计划(BE2022081)

Research on Malicious Websites Assessment Method Based on Multidimensional Features and PageRank Optimization

WANG Fangyuan1(), LIAN Zhichao1, LI Qianmu1, GU Huanhuan1, ZHAO Qian2   

  1. 1. School of Cyber Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    2. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
  • Received:2024-11-28 Online:2025-04-10 Published:2025-04-25

摘要:

随着互联网技术的快速发展,网络安全威胁日益严峻,恶意网址作为网络攻击的主要载体,通过钓鱼诈骗、恶意软件传播等手段严重威胁用户信息安全与数字资产安全。文章以提升恶意网址识别的准确性为研究目的,以恶意网址为研究对象,研究范围涵盖多维度特征分析与PageRank算法优化,运用域名特征分析、备案信息查询、域名收录搜索、流量行为分析、内容质量评估、用户行为数据和时间衰减因子等研究方法与理论。文章结合自然语言处理技术、机器学习和时间衰减机制,提出一个综合的恶意网址研判体系,并验证了其在提高恶意网址识别准确率方面的有效性。实验结果表明,该方法在综合准确率上达到了99.99%,相比传统方法有显著提升。文章的研究成果为网络安全防护提供了有力支持,对于构建更加安全、可信的网络环境具有重要意义。

关键词: 恶意网址研判, PageRank算法, 内容质量评估, 用户行为数据, 时间衰减因子

Abstract:

With the rapid development of internet technology, cybersecurity threats have become increasingly severe. Malicious websites, serving as primary carriers of cyberattacks, pose significant threats to user information security and digital asset safety through phishing scams, malware distribution, and other means. The purpose of this paper was to enhance the accuracy of malicious websites assessment, taking malicious websites as the research object, covering the research scope of multi-dimensional feature analysis and PageRank algorithm optimization. This study employed various research methods and theories, including domain name feature analysis, registration information inquiry, domain name inclusion search, traffic behavior analysis, content quality assessment, user behavior data collection, and time decay factor integration. This paper combined natural language processing technology, machine learning algorithms and time decay mechanisms, proposed a comprehensive malicious websites assessment system and verified its effectiveness in improving the accuracy of malicious websites assessment. Experimental results demonstrate that this method achieves a comprehensive accuracy rate to 99.99%, which represents a significant improvement over traditional methods. The research findings presented in this paper provide robust support for cybersecurity protection and remain significant for constructing a safer and more trustworthy online environment.

Key words: malicious websites assessment, PageRank algorithm, content quality assessment, user behavior data, time decay factor

中图分类号: