信息网络安全 ›› 2022, Vol. 22 ›› Issue (11): 77-84.doi: 10.3969/j.issn.1671-1122.2022.11.010

• 理论研究 • 上一篇    下一篇

基于图像细粒度特征的深度伪造检测算法

彭舒凡, 蔡满春(), 刘晓文, 马瑞   

  1. 中国人民公安大学信息网络安全学院,北京 100038
  • 收稿日期:2022-06-30 出版日期:2022-11-10 发布日期:2022-11-16
  • 通讯作者: 蔡满春 E-mail:caimanchun@ppsuc.edu.cn
  • 作者简介:彭舒凡(1998—),男,江苏,硕士研究生,主要研究方向为信息网络安全|蔡满春(1972—),男,河北,副教授,博士,主要研究方向为密码学与通信保密|刘晓文(1997—),男,山东,硕士研究生,主要研究方向为遥感图像融合|马瑞(1997—),男,江苏,硕士研究生,主要研究方向为深度伪造检测
  • 基金资助:
    “十三五”国家密码发展基金密码理论研究重点课题(MMJJ20180108);中国人民公安大学2020年基本科研业务费重大项目(2020JKF101)

Deepfake Detection Algorithm Based on Image Fine-Grained Features

PENG Shufan, CAI Manchun(), LIU Xiaowen, MA Rui   

  1. College of Information Network Security, People’s Public Security University of China, Beijing 100038, China
  • Received:2022-06-30 Online:2022-11-10 Published:2022-11-16
  • Contact: CAI Manchun E-mail:caimanchun@ppsuc.edu.cn

摘要:

随着深度学习的发展,深度伪造生成模型解决了生成图像中存在明显伪影的问题,但深度伪造图像与真实图像之间的区别往往是细微且局部的。因此,文章构建了一个基于图像细粒度特征的检测模型FGDD。针对深度伪造检测任务中仅使用粗粒度特征的不足,FGDD利用多分支模型充分学习样本图像的细粒度特征,通过引入通道注意力机制以及优化激活图掩膜定位策略提升面部敏感区域定位的精度。在激活图中,利用多级滑动窗口提取样本中的高区分度细微特征,通过AugMix数据增强策略提升模型对于细粒度特征的鲁棒性。实验结果表明,FGDD在多个数据集上的测试准确率优于主流算法,证明了基于图像细粒度特征的深度伪造检测算法的有效性。

关键词: 深度伪造, 深度伪造检测, 细粒度特征, 数据增强

Abstract:

With the development of deep learning, deepfake generation models have overcome the drawback of having obvious artifacts in the generated images, but the difference between deepfake images and real images is often subtle and partial. Therefore, a detection model FGDD based on fine-grained features of images was constructed in this paper. To address the shortcomings of using only coarse-grained features, FGDD fully learned the fine-grained features of the sample images by multi-branch, and improved the accuracy of locating sensitive facial regions by introducing a channel attention mechanism and an optimized activation map mask localization strategy. In the activation graph, the multi-level sliding windows were used to extract the highly differentiated subtle features in the samples, and the robustness of the model for fine-grained features was improved by using AugMix data enhancement strategy. The experimental results show that the tested accuracy of FGDD on several datasets outperform the mainstream algorithms, proving the effectiveness of the detection method based on fine-grained features of images.

Key words: deepfake, deepfake detection, fine-grained features, data augment

中图分类号: