信息网络安全 ›› 2021, Vol. 21 ›› Issue (8): 1-9.doi: 10.3969/j.issn.1671-1122.2021.08.001
收稿日期:
2021-04-12
出版日期:
2021-08-10
发布日期:
2021-09-01
通讯作者:
文伟平
E-mail:weipingwen@ss.pku.edu.cn
作者简介:
文伟平(1976—),男,湖南,教授,博士,主要研究方向为网络攻击与防范、软件安全漏洞分析、恶意代码研究、信息系统逆向工程和可信计算技术|胡叶舟(1995—),男,河南,硕士研究生,主要研究方向为异常网络流量识别、区块链安全|赵国梁(1991—),男,山东,硕士研究生,主要研究方向为恶意代码研究、异常网络流量识别|陈夏润(1997—)男,江西,硕士研究生,主要研究方向为软件安全漏洞分析、恶意代码研究
基金资助:
WEN Weiping(), HU Yezhou, ZHAO Guoliang, CHEN Xiarun
Received:
2021-04-12
Online:
2021-08-10
Published:
2021-09-01
Contact:
WEN Weiping
E-mail:weipingwen@ss.pku.edu.cn
摘要:
异常IP识别是追踪恶意主机的重要方式,是网络安全研究的热点之一。当前应用机器学习技术进行异常IP识别多依赖整体网络流量,在单台服务器流量下会失效,且面临标记数据成本高昂问题。针对上述问题,文章把聚类算法和遗传算法应用到对端异常IP主机的识别与分类技术中,利用网络流量的多维特征和单台主机上可检测的IP地址特征数据,使用无监督学习和半监督学习相结合的方法,实现对端异常IP的识别、检测,并且将方法实现为异常IP识别系统。系统在实验中能实现对UNSW-NB15数据集9种不同类型恶意IP的识别,识别精度最高可以达到98.84%。文章方法对恶意IP分类工作十分有效,并且可以识别未知类型的恶意IP,具有广泛的适用性和健壮性,已应用在国家某网络安全中心的流量识别系统中。
中图分类号:
文伟平, 胡叶舟, 赵国梁, 陈夏润. 基于流量特征分类的异常IP识别系统的设计与实现[J]. 信息网络安全, 2021, 21(8): 1-9.
WEN Weiping, HU Yezhou, ZHAO Guoliang, CHEN Xiarun. Design and Implementation of an Abnormal IP Identification System Based on Traffic Feature Classification[J]. Netinfo Security, 2021, 21(8): 1-9.
表2
分类实验中样本识别平均值
类别 | N | F | R | S | B | D | E | G | W | A |
---|---|---|---|---|---|---|---|---|---|---|
N | 409.3 | 85.4 | 33.8 | 6.5 | 6.5 | 4.8 | 5.1 | 1.1 | 6 | 6.5 |
F | 0 | 118.7 | 26.1 | 0.9 | 2.9 | 0.3 | 0 | 0.1 | 2.5 | 5.5 |
R | 0 | 0.9 | 153.1 | 0 | 2 | 0 | 0 | 0 | 0 | 4 |
S | 0 | 0 | 0 | 154.6 | 2.8 | 0 | 0 | 0 | 0 | 1.6 |
B | 0 | 0.2 | 0.6 | 8.8 | 102 | 4.8 | 0 | 0.6 | 7 | 19 |
D | 0 | 0.2 | 0 | 0 | 5.9 | 126.6 | 5.2 | 17.2 | 0.6 | 4.3 |
E | 0 | 0 | 0 | 0 | 2.6 | 5.7 | 149.4 | 0.1 | 0 | 2.2 |
G | 0 | 1 | 0 | 0.5 | 2.9 | 11.7 | 1.3 | 132 | 4.8 | 5.8 |
W | 0 | 2.1 | 0.9 | 0 | 2.3 | 0.3 | 0 | 1.1 | 90.6 | 7.7 |
A | 0 | 1.1 | 2.1 | 0 | 5.4 | 2.7 | 0.4 | 0 | 4.7 | 33.6 |
[1] |
LAKHINA A, CROVELLA M, DIOT C. Mining Anomalies Using Traffic Feature Distributions[J]. ACM SIGCOMM Computer Communication Review, 2005, 35(4):217-228.
doi: 10.1145/1090191.1080118 URL |
[2] | LEE D J, BROWNLEE N. A Methodology for Finding Significant Network Hosts[C].//IEEE. 32nd IEEE Conference on Local Computer Networks (LCN 2007). October 15-18, 2007, Dublin, Ireland. Piscataway: IEEE, 2007: 981-988. |
[3] |
ZIMBA A, CHEN Hongsong, WANG Zhaoshun, et al. Modeling and Detection of the Multi-stages of Advanced Persistent Threats Attacks Based on Semi-supervised Learning and Complex Networks Characteristics[J]. Future Generation Computer Systems, 2020, 106(5):501-517.
doi: 10.1016/j.future.2020.01.032 URL |
[4] | HUANG Siyi. Ip Address Characterizing Based on Netflow[D]. Nanjing: Southeast University, 2017. |
黄思逸. 基于流记录的IP地址角色挖掘[D]. 南京:东南大学, 2017. | |
[5] | MOORE A, ZUEV D, CROGAN M. Discriminators for Use in Flow-based Classification[R]. London: Queen Mary University of London, RR-05-13, 2013. |
[6] | SUH K, FIGUEIREDO D R, KUROSE J F, et al. Characterizing and Detecting Skype-relayed Traffic//INFOCOM. The 25th Conference on Computer Communications. April 23-29, 2006, Barcelona, Spain. New York: IEEE, 2006: 2706-2717. |
[7] |
LI Wei, CANINI M, MOORE A W, et al. Efficient Application Identification and the Temporal and Spatial Stability of Classification Schema[J]. Computer Networks, 2009, 53(6):790-809.
doi: 10.1016/j.comnet.2008.11.016 URL |
[8] | GAO Jixiang. NAT Recognition Method Based on Network Traffic Features[D]. Chengdu: University of Electronic Science and Technology of China, 2012. |
高骥翔. 基于网络流量特征的 NAT 识别方法[D]. 成都:电子科技大学, 2012. | |
[9] | LIU Bin, LI Zhitang, LI Jia. A New Method on P2P Traffic Identification Based on Flow[J]. Journal of Xiamen University(Natural Science), 2007, 2046(2):132-135. |
柳斌, 李之棠, 李佳. 一种基于流特征的 P2P 流量实时识别方法[J]. 厦门大学学报(自然科学版). 2007, 2046(2):132-135. | |
[10] | CHEN Yiran. Study of the Host Behavior Classification Method Based on The Network Features of Flow and Connection[D]. Chengdu: University of Electronic Science and Technology of China, 2016. |
陈怡然. 基于网络流和连接特征的端主机分类[D]. 成都:电子科技大学, 2016. | |
[11] | XUE Lihui. Research on Malicious IP Classification Algorithm Based on Big Data Platform[D]. Beijing: Beijing Jiaotong University, 2019. |
薛丽慧. 基于大数据平台的恶意IP分类算法研究[D]. 北京:北京交通大学, 2019. | |
[12] | ZHAO Yibin. Research on APT Malware Traffic Detection Method Based on Association Rules and Timing[D]. Chengdu: University of Electronic Science and Technology of China, 2020. |
赵艺宾. 关联规则与时序特征结合的APT恶意软件流量检测方法研究[D]. 成都:电子科技大学, 2020. | |
[13] | WANG Yong, ZHOU Huiyi, FENG Hao, et al. Network Traffic Classification Method Basing on CNN[J]. Journal on Communications, 2018, 39(1):14-23. |
王勇, 周慧怡, 俸皓, 等. 基于深度卷积神经网络的网络流量分类方法[J]. 通信学报, 2018, 39(1):14-23. | |
[14] |
IDHAMMAD M, AFDEL K, BELOUCH M. Semi-supervised Machine Learning Approach for DDoS Detection[J]. Applied Intelligence, 2018, 48(10):3193-3208.
doi: 10.1007/s10489-018-1141-2 URL |
[15] | GU Yonghao, LI Kaiyue, GUO Zhenyang, et al. Semi-supervised K-means DDoS Detection Method Using Hybrid Feature Selection Algorithm[J]. IEEE Access, 2019, 2019(7):64351-64365. |
[16] |
AHMAD S, LAVIN A, PURDY S, et al. Unsupervised Real-time Anomaly Detection for Streaming Data[J]. Neurocomputing, 2017, 262(1):134-147.
doi: 10.1016/j.neucom.2017.04.070 URL |
[17] |
XIAO Yawen, WU Jun, LIN Zongli, et al. A Semi-supervised Deep Learning Method Based on Stacked Sparse Auto-encoder for Cancer Prediction Using RNA-seq Data[J]. Computer Methods and Programs in Biomedicine, 2018, 166(11):99-105.
doi: 10.1016/j.cmpb.2018.10.004 URL |
[18] | LU Yi, LU Shiyong, FOTOUHI F, et al. FGKA: A Fast Genetic K-means Clustering Algorithm[C].//ACM. Proceedings of the 2004 ACM Symposium on Applied Computing. March 14,2004, Nicosia Cyprus. New York: ACM, 2004: 622-623. |
[19] |
LIU Anan, SU Yuting, NIE Weizhi, et al. Hierarchical Clustering Multi-task Learning for Joint Human Action Grouping and Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(1):102-114.
doi: 10.1109/TPAMI.34 URL |
[20] | WANG Yinnian. The Research and Application of Genetic Algorithm[D]. Wuxi: Jiangnan University, 2009. |
王银年. 遗传算法的研究与应用[D]. 无锡:江南大学, 2009. | |
[21] | WEI Zaoyu. Research on Blockchain Smart Contract Vulnerability Detection Based on Taint Analysis and Genetic Algorithm[D]. Beijing: Beijing University of Posts and Telecommunications, 2020. |
韦早裕. 基于污点分析和遗传算法的区块链智能合约漏洞检测技术研究[D]. 北京:北京邮电大学, 2020. |
[1] | 李辉, 倪时策, 肖佳, 赵天忠. 面向互联网在线视频评论的情感分类技术[J]. 信息网络安全, 2019, 19(5): 61-68. |
[2] | 杨连群, 温晋英, 刘树发, 王峰. 一种改进的图分割算法在用户行为异常检测中的应用[J]. 信息网络安全, 2016, 16(6): 35-40. |
[3] | 张鑫;马勇;曹鹏. 基于贝叶斯分类算法的木马程序流量识别方法[J]. , 2012, 12(8): 0-0. |
[4] | 李政泽;韩毅;周斌;贾焰. 微博用户分类的特征词权重优化及推荐策略[J]. , 2012, 12(8): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||