信息网络安全 ›› 2020, Vol. 20 ›› Issue (1): 67-74.doi: 10.3969/j.issn.1671-1122.2020.01.010
收稿日期:
2019-09-10
出版日期:
2020-01-10
发布日期:
2020-05-11
作者简介:
作者简介:侯留洋(1991—),男,河南,硕士研究生,主要研究方向为机器学习、网络安全;罗森林(1968—),男,河北,教授,博士,主要研究方向为信息安全;潘丽敏(1968—),女,黑龙江,高级工程师,硕士,主要研究方向为网络安全、文本安全;张笈(1968—),男,陕西,副教授,硕士,主要研究方向为网络安全、数据挖掘。
基金资助:
HOU Liuyang, LUO Senlin(), PAN Limin, ZHANG Ji
Received:
2019-09-10
Online:
2020-01-10
Published:
2020-05-11
摘要:
针对当前基于机器学习的Android恶意软件检测方法特征构建维度单一,难以全方位表征Android恶意软件行为特点的问题,文章提出一种融合软件行为特征、AndroidManifest.xml文件结构特征和Android恶意软件分析经验特征的恶意软件检测方法。该方法提取Android应用的Dalvik操作码N-gram语义信息、系统敏感API、系统Intent、系统Category、敏感权限和相关经验特征,多方位表征Android恶意软件的行为并构建特征向量,采用基于XGBoost的集成学习算法构建分类模型,实现对恶意软件的准确分类。在公开数据集DREBIN和AMD上进行实验,实验结果表明,该方法能够达到高于97%的检测准确率,有效提升了Android恶意软件的检测效果。
中图分类号:
侯留洋, 罗森林, 潘丽敏, 张笈. 融合多特征的Android恶意软件检测方法[J]. 信息网络安全, 2020, 20(1): 67-74.
HOU Liuyang, LUO Senlin, PAN Limin, ZHANG Ji. Multi-feature Android Malware Detection Method[J]. Netinfo Security, 2020, 20(1): 67-74.
表1
Dalvik指令符号化转化表
符号 | 语义 | 数量 | 代表的Dalvik指令 |
---|---|---|---|
C | Compare | 5 | Cmp-float|cmpg-float|cmpl_double|cmpg-double |cmp-long |
D | Definition | 11 | Const|const/4|const/16|const-wide|const/high|const-string |
M | manipulation | 13 | Move|move-wide|move-object|move-result|move-exception |
R | Reture | 4 | Reture|return-void|return-wide|return-object |
L | Monitor | 2 | Monitor-enter|monitor-exit |
G | Jump | 3 | Goto|goto/16|goto/32 |
I | Judgemnet | 12 | If-eq|if-ne|if-lt|if-ge|if-gt|if-le|if-eqz|if-nez|if-gez|if-gtz|if-lez |
T | Reading | 21 | Aget|iget|sget|aget-wide|aget-object|aget-boolea|aget-byte|aget-char |
P | Writing | 21 | Ainput|iput|sput|aput-wide|aput-object|aput-boolea| aput-byte|aput-char |
V | Method call | 15 | Invoke-virtual|invoke-super|invike-direct|invoke-static |
表2
Android应用恶意特征
特征类别 | 数量 | 特征部分实例 |
---|---|---|
敏感API特征 | 629 | Android/net/ConnectivityManager;startUsingNetworkFeature Android/net/wifi/p2p/WifiP2pManager;initialize Android/net/ConnectivityManager;stopUsingNetworkFeature Android/provider/Browser;getVisitedHistory Android/location/LocationManager;getProvider |
敏感权限特征 | 21 | Android.permission.CAMERA Android.permission.READ_CONTACTS Android.permission.WRITE_CONTACTS Android.permission.READ_PHONE_STATE Android.permission.READ_CALL_LOG |
系统Action特征 | 41 | Android.intent.action.MAIN Android.intent.action.VIEW Android.intent.action.PICK_ACTIVITY Android.intent.action.MEDIA_MOUNTED Android.intent.action.MEDIA_UNMOUNTED |
系统Category | 11 | Android.intent.category.DEFAULT Android.intent.category.BROWSABLE Android.intent.category.TAB Android.intent.category.CAR_DOCK Android.intent.category.DESK_DOCK |
经验特征 | 17 | 权限数量 资源文件中包含图像的文件个数 资源文件中包含可执行文件个数 DEX文件中所有类的个数超过10个 DEX文件中所有方法的个数超过1000个 |
[1] | FORNI A A. Gartner Says Worldwide Sales of Smartphones Grew 9 Percent in First Quarter of 2017[EB/OL]. , 2019-6-5. |
[2] | NICOLAS L. Number of Available Applications in the Google Play Store from December 2009 to December 2017[EB/OL]. , 2019-6-5. |
[3] | RALF B. Malware Trends 2017[EB/OL]. , 2019-6-5. |
[4] | WU Dongjie, MAO C H, WEI T E, et al.DroidMat: Android Malware Detection through Manifest and API Calls Tracing[C]//IEEE. 2012 Seventh Asia Joint Conference on IEEE, August 9-10, 2012, Tokyo Japan. New Jersey: IEEE, 2012: 62-70. |
[5] | AU K W Y, ZHOU Yifan, ZHANG Huang, et al. PScout: Analyzing the Android Permission Specification[C]//ACM. ACM Conference on Computer & Communications Security ACM, October 16-18, 2012, Raleigh, NC, USA. New York: ACM, 2012: 217-228. |
[6] | PANDITA R, XIAO Xusheng, YANG Wei, et al.WHYPER: Towards Automating Risk Assessment of Mobile Applications[C]//ACM. 22nd USENIX Conference on Security, August 14-16, 2013, Berkeley, CA, USA. New York: ACM, 2013: 571-584. |
[7] | IDRESS F, RAJARAJAN M.Investigating the Android Intents and Permissions for Malware Detection[C]//IEEE. 10th International Conference on Wireless and Mobile Computing, Networking and Communications(WiMob), October 8-10, 2014, Larnaca, Cyprus. New Jersey: IEEE, 2014: 354-358. |
[8] | LI Li, BARTEL A, BISSYANDE T F, et al.IccTA: Detecting Inter-Component Privacy Leaks in Android Apps[C]//IEEE. 37th International Conference on Software Engineering(ICSE 2015), May 16-24, 2015, Florence/Firenze, Italy. New Jersey: IEEE, 2015: 280-291. |
[9] | ARP D, SPREITZENBARTH M, HUBNER M, et al.Drebin: Effective and Explainable Detection of Android Malware in Your Pocket[C]//IEEE. 2014 Network and Distributed System Security Symposium, February 23-26, 2014, San Diego, California, USA. New Jersey: IEEE, 2014: 23-38. |
[10] | CHIN E, FELT A P, GREENWOOD K, et al.Analyzing Interapplication Communication in Android[J]. Signo Pensam, 2006, 27(49): 36-45. |
[11] | ZHOU Wu, ZHOU Yajin, GRACE M, et al.Fast, Scalable Detection of Piggybacked Mobile Applications[C]//ACM.3rd ACM Conference on Data and Application Security and Privacy, February 18-20, 2013, San Antonio, TX, USA. New York: ACM, 2013: 185-196. |
[12] | HOFFMANN J, USSATH M, HOLZ T, et al.Slicing Droids: Program Slicing for Smali Code[C]//ACM. 28th Annual ACM Symposium on Applied Computing, March 18-22, 2013, Coimbra, Portugal. New York: ACM, 2013: 1844-1851. |
[13] | YU Wei, GE Linqiang, XU Guobin, et al. Towards Neural Network Based Malware Detection on Android Mobile Devices[EB/OL]. , 2019-6-5. |
[14] | ZHOU Wu, ZHOU Yajin, JIANG Xuxian, et al.Detecting Repackaged Smartphone Applications in Third-party Android Marketplaces[C]//ACM. 2nd ACM Conference on Data and Application Security and Privacy, February 7-9, 2012, San Antonio, Texas, USA. New York: ACM, 2012: 317-326. |
[15] | WOGNSEN E R, KARLSEN H S, OLESEN M C, et al. Formalisation and Analysis of Dalvik Bytecode[EB/OL]. , 2019-7-10. |
[16] | AAFER Y, DU Wenliang, YIN Heng.DroidAPIMiner: Mining API-level Features for Robust Malware Detection in ANDROID[C]//Springer. International Conference on Security and Privacy in Communication Systems, September 25-28, Sydney, NSW, Australia. Heidelberg: Springer, 2013: 86-103. |
[17] | WEI Fengguo, LI Yuping, ROY S, et al.Deep Ground Truth Analysis of Current Android Malware[C]//Springger. International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, July 6-7, 2017, Bonn, Germany. Heidelberg: Springer, 2017: 252-276. |
[18] | LI Jin, SUN Lichao, YAN Qiben, et al.Significant Permission Identification for Machine-learning-based Android Malware Detection[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3216-3225. |
[19] | XIE Niannian, ZENG Fanping, QIN Xiaoxia, et al.RepassDroid: Automatic Detection of Android Malware Based on Essential Permissions and Semantic Features of Sensitive APIs[C]//IEEE. 2018 International Symposium on Theoretical Aspects of Software Engineering(TASE), August 14-16, 2018, Guangzhou, China. New Jersey: IEEE, 2018: 52-59. |
[20] | ZHANG Hanqing, LUO Senlin, ZHANG Yifei, et al. An Efficient Android Malware Detection System Based on Method-level Behavioral Semantic Analysis[EB/OL]. , 2019-8-12. |
[1] | 袁晓筱, 罗森林, 杨鹏. Android系统应用程序DEX文件保护方法研究[J]. 信息网络安全, 2020, 20(7): 60-69. |
[2] | 宋鑫, 赵楷, 张琳琳, 方文波. 基于随机森林的Android恶意软件检测方法研究[J]. 信息网络安全, 2019, 19(9): 1-5. |
[3] | 丁丽萍, 刘雪花, 陈光宣, 李引. Android智能手机动态内存取证技术综述[J]. 信息网络安全, 2019, 19(2): 10-17. |
[4] | 冯胥睿瑞, 刘嘉勇, 程芃森. 基于特征提取的恶意软件行为及能力分析方法研究[J]. 信息网络安全, 2019, 19(12): 72-78. |
[5] | 张健, 陈博翰, 宫良一, 顾兆军. 基于图像分析的恶意软件检测技术研究[J]. 信息网络安全, 2019, 19(10): 24-31. |
[6] | 刘延华, 高晓玲, 朱敏琛, 苏培煌. 基于数据特征学习的网络安全数据分类方法研究[J]. 信息网络安全, 2019, 19(10): 50-56. |
[7] | 张阳, 姚原岗. 基于Xgboost算法的网络入侵检测研究[J]. 信息网络安全, 2018, 18(9): 102-105. |
[8] | 宋新龙, 郑东, 杨中皇. 基于AOSP与SELinux的移动设备管理系统[J]. 信息网络安全, 2017, 17(9): 103-106. |
[9] | 陆德冰, 崔浩亮, 张文, 牛少彰. 基于Intent过滤的应用安全加固方案[J]. 信息网络安全, 2017, 17(11): 67-73. |
[10] | 刘佳佳, 俞研, 胡恒伟, 吴家顺. 一种基于虚拟机定制的应用保护方法研究[J]. 信息网络安全, 2017, 17(1): 63-67. |
[11] | 张健, 王文旭, 牛鹏飞, 顾兆军. 恶意软件防治产品与服务评测体系研究[J]. 信息网络安全, 2016, 16(9): 113-117. |
[12] | 文伟平, 汤炀, 谌力. 一种基于Android内核的APP敏感行为检测方法及实现[J]. 信息网络安全, 2016, 16(8): 18-23. |
[13] | 余丽芳, 杨天长, 牛少彰. 一种增强型Android组件间安全访问控制方案[J]. 信息网络安全, 2016, 16(8): 54-60. |
[14] | 曲乐炜, 罗森林, 孙志鹏, 朱帅. Android系统数据完整性检测方法研究[J]. 信息网络安全, 2016, 16(8): 61-67. |
[15] | 张家旺, 李燕伟. 基于N-gram算法的恶意程序检测系统研究与设计[J]. 信息网络安全, 2016, 16(8): 74-80. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||