| [1] |
BALUJA S. Hiding Images in Plain Sight: Deep Steganography[EB/OL]. (2017-12-04)[2025-07-06]. https://www.semanticscholar.org/paper/Hiding-Images-in-Plain-Sight%3A-Deep-Steganography-Baluja/d511567a87218a555a4cc662c42ee89f044a5852.
|
| [2] |
HAYES J, DANEZIS G. Generating Steganographic Images via Adversarial Training[EB/OL]. (2017-03-01)[2025-07-06]. https://www.semanticscholar.org/paper/Generating-steganographic-images-via-adversarial-Hayes-Danezis/2da1a80955df1612766ffdf63916a6a374780161.
|
| [3] |
KUNHOTH J, SUBRAMANIAN N, AL-MAADEED S, et al. Video Steganography: Recent Advances and Challenges[J]. Multimedia Tools and Applications, 2023, 82(27): 41943-41985.
doi: 10.1007/s11042-023-14844-w
|
| [4] |
CHAN C K, CHENG L M. Hiding Data in Images by Simple LSB Substitution[J]. Pattern Recognition, 2004, 37(3): 469-474.
doi: 10.1016/j.patcog.2003.08.007
URL
|
| [5] |
WANG C M, WU N I, TSAI C S. A High Quality Steganographic Method with Pixel-Value Differencing and Modulus Function[J]. Journal of Systems and Software, 2008, 81(1): 150-158.
doi: 10.1016/j.jss.2007.01.049
URL
|
| [6] |
LAM E Y, GOODMAN J W. A Mathematical Analysis of the DCT Coefficient Distributions for Images[J]. IEEE Transactions on Image Processing, 2000, 9(10): 1661-1666.
doi: 10.1109/83.869177
pmid: 18262905
|
| [7] |
MSTAFA R J, ELLEITHY K M. Compressed and Raw Video Steganography Techniques: A Comprehensive Survey and Analysis[J]. Multimedia Tools and Applications, 2017, 76(20): 21749-21786.
doi: 10.1007/s11042-016-4055-1
URL
|
| [8] |
VOULODIMOS A, DOULAMIS N, DOULAMIS A, et al. Deep Learning for Computer Vision: A Brief Review[J]. Computational Intelligence and Neuroscience, 2018, 18(1): 41-49.
|
| [9] |
OTTER D W, MEDINA J R, KALITA J K. A Survey of the Usages of Deep Learning for Natural Language Processing[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(2): 604-624.
doi: 10.1109/TNNLS.5962385
URL
|
| [10] |
ZHANG Zixing, GEIGER J, POHJALAINEN J, et al. Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments[J]. ACM Transactions on Intelligent Systems & Technology, 2018, 9(5): 1-28.
|
| [11] |
YANG Ziyun, WANG Zichi, ZHANG Xinpeng. A General Steganographic Framework for Neural Network Models[J]. Information Sciences, 2023, 643(9): 119-125.
|
| [12] |
YANG Zhongliang, GUO Xiaoqin, CHEN Zimin, et al. RNN-Stega: Linguistic Steganography Based on Recurrent Neural Networks[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(5): 1280-1295.
doi: 10.1109/TIFS.2018.2871746
URL
|
| [13] |
XU Chenyi, HUANG Lin, QIN Chuan, et al. Steganography with Constructing Neural Networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2025: 1-11.
|
| [14] |
WENG Xinyu, LI Yongzhi, CHI Lu. Convolutional Video Steganography with Temporal Residual Modeling[EB/OL]. (2018-02-13)[2025-05-19]. http://arxiv.org/abs/1806.02941.
|
| [15] |
VStegNET. Video Steganography Networkusing Spatio-Temporal Features and Micro-Bottleneck[EB/OL]. [2025-05-19]. https://paperswithcode.com/paper/vstegnet-video-steganography-networkusing.
|
| [16] |
JAISWAL A, KUMAR S, NIGAM A. En-VStegNET: Video Steganography Using Spatio-Temporal Feature Enhancement with 3D-CNN and Hourglass[C]// IEEE. 2020 International Joint Conference on Neural Networks (IJCNN). New York: IEEE, 2020: 1-8.
|
| [17] |
BARMAN A, DUTTA P. Facial Expression Recognition Using Reversible Neural Network[J]. Applied Soft Computing, 2024, 162: 15-26.
|
| [18] |
HAN Qinhui, JUNG C. Cross Spectral Disparity Estimation from VIS and NIR Paired Images Using Disentangled Representation and Reversible Neural Networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(5): 5326-5336.
doi: 10.1109/TITS.2023.3238800
URL
|
| [19] |
LIU Ming, YE Guodong, ZHOU Junwei. Asymmetric Image Encryption-Hiding Scheme Based on Reversible Neural Network[J]. Science China(Technological Sciences), 2025, 68(9): 24-31.
|
| [20] |
MOU Chong, XU Youmin, SONG Jiecong, et al. Large-Capacity and Flexible Video Steganography via Invertible Neural Network[C]// IEEE. The IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2023: 22606-22615.
|
| [21] |
DINH L, KRUEGER D, BENGIO Y. NICE: Non-Linear Independent Components Estimation[EB/OL]. (2015-02-16)[2025-05-19]. http://arxiv.org/abs/1410.8516.
|
| [22] |
DINH L, SOHL-DICKSTEIN J, BENGIO S. Density Estimation Using Real NVP[EB/OL]. (2017-03-19)[2025-05-19]. http://arxiv.org/abs/1605.08803.
|
| [23] |
XU Wanni, FU Youlei, ZHU Dongmei. ResNet and Its Application to Medical Image Processing: Research Progress and Challenges[J]. Computer Methods and Programs in Biomedicine, 2023, 240: 60-76.
|
| [24] |
KOONCE B. Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization[M]. Berkeley: Apress, 2021.
|
| [25] |
GIRDHAR N, SINHA A, GUPTA S. DenseNet-II: An Improved Deep Convolutional Neural Network for Melanoma Cancer Detection[J]. Soft Computing, 2023, 27(18): 13285-13304.
doi: 10.1007/s00500-022-07406-z
|
| [26] |
HOU Yuntao, WU Zequan, CAI Xiaohua, et al. The Application of Improved Densenet Algorithm in Accurate Image Recognition[J]. Scientific Reports, 2024, 14(1): 24-35.
doi: 10.1038/s41598-023-50497-3
|
| [27] |
WANG Xiaolong, GIRSHICK R, GUPTA A, et al. Non-Local Neural Networks[C]// IEEE. IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 7794-7803.
|
| [28] |
LI Zhiyuan, WU Anhao, TAN Lin, et al. Stream Sequence Feature Fusion and Attention Mechanism Based Method for Encrypted Traffic Classification[J]. Journal of Chinese Computer Systems, 2025, 46(7): 1718-1726.
|
|
李志远, 吴安昊, 谭林, 等. 基于流序列特征融合与注意力机制的加密流量分类方法[J]. 小型微型计算机系统, 2025, 46(7): 1718-1726.
|
| [29] |
HUANG Gao, LIU Zhuang, VAN D M L, et al. Densely Connected Convolutional Networks[C]// IEEE. IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 2261-2269.
|
| [30] |
GORELICK L, BLANK M, SHECHTMAN E, et al. Actions as Space-Time Shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(12): 2247-2253.
pmid: 17934233
|
| [31] |
SOOMRO K, ZAMIR A R, SHAH M. UCF101: A Dataset of 101 Human Actions Classes from Videos in the Wild[EB/OL]. (2012-03-04)[2025-05-19]. http://arxiv.org/abs/1212.0402.
|
| [32] |
DAMEN D, DOUGHTY H, FARINELLA G M, et al. Rescaling Egocentric Vision: Collection, Pipeline and Challenges for EPIC-KITCHENS-100[J]. International Journal of Computer Vision, 2022, 130(1): 33-55.
doi: 10.1007/s11263-021-01531-2
|