[1] |
KORUS P, HUANG Jiwu. Multi-Scale Analysis Strategies in PRNU-Based Tampering Localization[J]. IEEE, 2017, 12(4): 809-824.
|
[2] |
FERRARA P, BIANCHI T, ROSA A D, et al. Image Forgery Localization via Fine-Grained Analysis of CFA Artifacts[J]. IEEE, 2012, 7(5): 1566-1577.
|
[3] |
ZHAO Jie, GUO Jichang, ZHANG Yan, et al. Automatic Detection and Localization of Image Forgery Regions Based on Offset Estimation of Double JPEG Compression[J]. Journal of Image and Graphics, 2015, 20(10): 1304-1312.
|
|
赵洁, 郭继昌, 张艳, 等. JPEG图像双重压缩偏移量估计的篡改区域自动检测定位[J]. 中国图象图形学报, 2015, 20(5):1304-1312.
|
[4] |
WU Xueming, FANG Zhen. Image Splicing Detection Using Illuminant Color Inconsistency[C]// IEEE. 2011 Third International Conference on Multimedia Information Networking and Security. New York: IEEE, 2011: 600-603.
|
[5] |
JIANG Xiaoyu, LIU Chunxiao. Edge and Region Inconsistency-Guided Image Splicing Tamper Detection Network[J]. Journal of Image and Graphics, 2021, 26(10): 2411-2420.
|
|
蒋小玉, 刘春晓. 边缘与区域不一致性引导下的图像拼接篡改检测网络[J]. 中国图象图形学报, 2021, 26(10):2411-2420.
|
[6] |
LI Peng, LI Shuaijie, YAO Zhengan, et al. Two Anisotropic Fourth-Order Partial Differential Equations for Image Inpainting[J]. IET Image Processing, 2013, 7(3): 260-269.
doi: 10.1049/iet-ipr.2012.0592
URL
|
[7] |
LIU Yunqiang, CASELLES V. Exemplar-Based Image Inpainting Using Multiscale Graph Cuts[J]. IEEE, 2013, 22(5): 1699-1711.
|
[8] |
WU Yue, ABDALMAGEED W, NATARAJAN P. ManTra-Net: Manipulation Tracing Network for Detection and Localization of Image Forgeries with Anomalous Features[C]// IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New York: IEEE, 2019: 9535-9544.
|
[9] |
LI Haodong, HUANG Jiwu. Localization of Deep Inpainting Using High-Pass Fully Convolutional Network[C]// IEEE. 2019 IEEE/CVFInternational Conference on Computer Vision (ICCV). New York: IEEE, 2019: 8300-8309.
|
[10] |
WU Haiwei, ZHOU Jiantao. IID-Net: Image Inpainting Detection Network via Neural Architecture Search and Attention[J]. IEEE, 2022, 32(3): 1172-1185.
|
[11] |
HUANG Gao, LIU Zhang, MAATEN L V D, et al. Densely Connected Convolutional Networks[C]// IEEE. 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2017: 4700-4708.
|
[12] |
HAN Kai, WANG Yunhe, TIAN Qi, et al. GhostNet: More Features From Cheap Operations[C]// IEEE. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2020: 1577-1586.
|
[13] |
YU F, KOLTUN V. Multi-Scale Context Aggregation by Dilated Convolutions[EB/OL]. (2016-04-30)[2022-04-04]. https://arxiv.org/abs/1511.07122.
|
[14] |
HU Jie, SHEN Li, SUN Gang. Squeeze-and-Excitation Networks[C]// IEEE.2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2018: 7132-7141.
|
[15] |
PATHAK D, KRAHENBUHL P, DONAHUE J, et al. Context Encoders: Feature Learning by Inpainting[C]// IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 2536-2544.
|
[16] |
IIZUKA S, SIMO-SERRA E, ISHIKAWA H. Globally and Locally Consistent Image Completion[J]. ACM, 2017, 36(4): 1-14.
|
[17] |
YAN Zhaoyi, LI Xiaoming, LI Mu, et al. Shift-Net: Image Inpainting via Deep Feature Rearrangement[C]// Springer. Proceedings of the European Conference on Computer Vision(ECCV). Heidelberg:Springer, 2018: 1-17.
|
[18] |
YU Jiahui, LIN Zhe, YANG Jimei, et al. Free-Form Image Inpainting with Gated Convolution[C]// IEEE.2019 IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2019: 4470-4479.
|
[19] |
WU Haiwei, ZHOU Jiantao, LI Yuanman. Deep Generative Model for Image Inpainting with Local Binary Pattern Learning and Spatial Attention[EB/OL]. (2020-09-02)[2022-04-05]. https://arxiv.org/abs/2009.01031.
|
[20] |
YU Tao, GUO Zongyu, JIN Xin, et al. Region Normalization for Image Inpainting[C]// ECCV.Proceedings of the AAAI Conference on Artificial Intelligence. New York: ECCV, 2020: 12733-12740.
|
[21] |
YU Yingchen, ZHAN Fangneng, WU Rongliang, et al. Diverse Image Inpainting with Bidirectional and Autoregressive Transformers[C]// ACM. Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 69-78.
|
[22] |
WU Qiong, SUN Shaojie, ZHU Wei, et al. Detection of Digital Doctoring in Exemplar-Based InpaintedImages[C]// IEEE. 2008 International Conference on Machine Learning and Cybernetics. New York: IEEE, 2008: 1222-1226.
|
[23] |
CHANGC I, YU C J, CHANG C C. A Forgery Detection Algorithm for Exemplar-Based Inpainting Images Using Multi-Region Relation[J]. Image and Vision Computing, 2013, 31(1): 57-71.
doi: 10.1016/j.imavis.2012.09.002
URL
|
[24] |
ZHAN Yuqian, LIAO Miao, SHIH F Y, et al. Tampered Region Detection of Inpainting JPEG Images[J]. Optik, 2013, 124(16): 2487-2492.
doi: 10.1016/j.ijleo.2012.08.018
URL
|
[25] |
LIANG Zaoshan, YANG Gaobo, DING Xiangling, et al. An Efficient Forgery Detection Algorithm for Object Removal by Rxemplar-Based Image Inpainting[J]. Journal of Visual Communication and Image Representation, 2015, 30: 75-85.
doi: 10.1016/j.jvcir.2015.03.004
URL
|
[26] |
ZHU Xinshan, SUN Biao. A Deep Learning Approach to Patch-Based Image Inpainting Forensics[J]. Signal Processing: Image Communication, 2018, 67: 90-99.
doi: 10.1016/j.image.2018.05.015
URL
|
[27] |
LI Haodong, LUO Weiqi, HUANG Jiwu. Localization of Diffusion-Based Inpainting in Digital Images[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(12): 3050-3064.
doi: 10.1109/TIFS.2017.2730822
URL
|
[28] |
ODENA A, DUMOULIN V, OLAH C. Deconvolution and Checkerboard Artifacts[EB/OL]. (2016-10-17)[2022-04-05]. https://distill.pub/2016/deconv-checkerboard/.
|
[29] |
ZHOU Bolei, LAPEDRIZA A, KHOSLA A, et al. Places: A 10 Million Image Database for Scene Recognition[J]. IEEE, 2017, 40(6): 1452-1464.
|