[1] |
GM/T0002-2012 SM4 Block Cipher Algorithm[S]. Beijing: Standards Press of China, 2012.
|
|
GM/T0002-2012 SM4分组密码算法[S]. 北京: 中国标准出版社, 2012.
|
[2] |
REITER M K, FRANKLIN M K, LACY J B, et al. The Ω Key Management Service[J]. Journal of Computer Security, 1996, 4(4):267-287.
doi: 10.3233/JCS-1996-4402
URL
|
[3] |
CHALLAL Y, SEBA H. Group Key Management Protocols: A Novel Taxonomy[J]. International Journal of Information Technology, 2005, 2(1):105-118.
|
[4] |
READY L B, ODEN R, CHADWICK H S, et al. Development of An Anesthesiology-based Postoperative Pain Management Service[J]. The Journal of the American Society of Anesthesiologists, 1988, 68(1):100-106.
|
[5] |
TIAN Biming, HAN Song, LIU Liu, et al. Towards Enhanced Key Management in Multi-phase ZigBee Network Architecture[J]. Computer Communications, 2012, 35(5):579-588.
doi: 10.1016/j.comcom.2011.12.004
URL
|
[6] |
CHANDRAMOULI R, IORGA M, CHOKHANI S. Cryptographic Key Management Issues and Challenges in Cloud Services[J]. Secure Cloud Computing, 2014: 1-30.
|
[7] |
TOMESCU A, CHEN R, ZHENG Yiming, et al. Towards Scalable Threshold Cryptosystems[C]//IEEE. 2020 IEEE Symposium on Security and Privacy, May 18-20, 2020, San Francisco, CA, USA. Piscataway: IEEE Press, 2020: 877-893.
|
[8] |
HE Debiao, ZHANG Yudi, WANG Ding, et al. Secure and Efficient Two-party Signing Protocol for the Identity-based Signature Scheme in the IEEE P1363 Standard for Public Key Cryptography[J]. IEEE Transactions on Dependable and Secure Computing, 2018, 17(5):1124-1132.
doi: 10.1109/TDSC.8858
URL
|
[9] |
FENG Qi, HE Debiao, LIU Zhe, et al. Distributed Signing Protocol for IEEE P1363-compliant Identity-based Signature Scheme[J]. IET Information Security, 2020, 14(4):443-451.
doi: 10.1049/ise2.v14.4
URL
|
[10] |
ZHANG Yudi, HE Debiao, ZHANG Mingwu, et al. A Provable-secure and Practical Two-party Distributed Signing Protocol for SM2 Signature Algorithm[J]. Frontiers of Computer Science, 2020, 14(3):1-14.
doi: 10.1007/s11704-019-8231-0
URL
|
[11] |
MU Yongheng, XU Haixia, LI Peili, et al. Secure Two-party SM9 Signing[J]. SCIENCE CHINA Information Sciences, 2020, 63(8):1-3.
|
[12] |
BOYLE E, GOLDWASSER S, TESSARO S. Communication Locality in Secure Multi-party Computation[C]// TCC. Theory of Cryptography Conference, March 3-6, 2003, Tokyo, Japan. Heidelberg: Springer, 2013: 356-376.
|
[13] |
FENG Qi, HE Debiao, LUO Min, et al. Lightweight SM2 Two Party Cooperative Signature in Mobile Internet Environment[J]. Journal of Computer Research and Development, 2020, 57(10):2136-2146.
|
|
冯琦, 何德彪, 罗敏, 等. 移动互联网环境下轻量级SM2两方协同签名[J]. 计算机研究与发展, 2020, 57(10):2136-2146.
|
[14] |
SHAMIR A. How to Share a Secret[J]. Communications of the ACM, 1979, 22(11):612-613.
doi: 10.1145/359168.359176
URL
|
[15] |
HOU Hongxia, YANG Bo, ZHANG Lina, et al. Secure Two Party Cooperative SM2 Signature Algorithm[J]. Acta Electronica Sinica, 2019, 48(1):1-8.
|
|
侯红霞, 杨波, 张丽娜, 等. 安全的两方协作SM2签名算法[J]. 电子学报, 2019, 48(1):1-8.
|
[16] |
MACKENZIE P, REITER M K. Two-party Generation of DSA Signatures[C]// Springer. 21th Annual International Cryptology Conference, August 12-16, 2001, San Francisco, CA, USA. Berlin: Springer, 2001: 137-154.
|
[17] |
LINDELL Y. Fast Secure Two-party ECDSA Signing[C]// Springer. 37th Annual International Cryptology Conference, August 20-24, 2017, Santa Barbara, CA, USA. Berlin: Springer, 2017: 613-644.
|
[18] |
DOERNER J, KONDI Y, LEE E, et al. Secure Two-party Threshold ECDSA from ECDSA Assumptions[C]// IEEE. 2018 IEEE Symposium on Security and Privacy, May 20-24, 2018, San Francisco, CA, USA. Piscataway: IEEE Press, 2018: 980-997.
|
[19] |
CHOU T, ORLANDI C. The Simplest Protocol for Oblivious Transfer[C]// Springer. 4th International Conference on Cryptology and Information Security in Latin America, August 23-26, 2015, Guadalajara, Mexico. Berlin: Springer, 2015: 40-58.
|
[20] |
KELLER M, ORSINI E, SCHOLL P. Actively Secure OT Extension with Optimal Overhead[C]//Springer. 35th Annual Cryptology Conference, August 16-20, 2015, Santa Barbara, CA, USA. Berlin: Springer, 2015: 724-741.
|
[21] |
BEAVER D. Efficient Multiparty Protocols Using Circuit Randomization[C]//Springer. 11th Annual International Cryptology Conference, August 11-15, 1991, Santa Barbara, CA, USA. Berlin: Springer, 1991: 420-432.
|
[22] |
ZHANG Lei, WU Wenling. Differential Fault Attack of SM4 Cipher Algorithm[J]. Chinese Journal of Computers, 2006, 29(9):1596-1602.
|
|
张蕾, 吴文玲. SM4密码算法的差分故障攻击[J]. 计算机学报, 2006, 29(9):1596-1602.
|
[23] |
DONG Xiaoli. Security Analysis of AES and SM4 Block Ciphers[D]. Xi’an: Xidian University, 2011.
|
|
董晓丽. 分组密码AES和SM4的安全性分析[D]. 西安:西安电子科技大学, 2011.
|
[24] |
FENG Qi, HE Debiao, LIU Zhe, et al. Secure NLP: A System for Multi-party Privacy-preserving Natural Language Processing[J]. IEEE Transactions on Information Forensics and Security, 2020, 15(5):3709-3721.
doi: 10.1109/TIFS.10206
URL
|
[25] |
HUANG Kai, LIU Ximeng, FU Shaojing, et al. A Lightweight Privacy-preserving CNN Feature Extraction Framework for Mobile Sensing[J]. IEEE Transactions on Dependable and Secure Computing, 2019, 18(9):1441-1455.
|
[26] |
CRAMER R, DAMGRD I, ESCUDERO D, et al. SPDZ2k: Efficient MPC for Dishonest Majority[C]// Springer. 38th Annual International Cryptology Conference, August 19-23, 2018, Santa Barbara, CA, USA. Berlin: Springer, 2018: 769-798.
|