[1] |
VAARANDI R.A Data Clustering Algorithm for Mining Patterns from Event Logs[C]//IEEE. 3rd IEEE Workshop on IP Operations & Management, October 3, 2003, Kansas City, MO, USA. New Jersey: IEEE, 2003: 119-126.
|
[2] |
VAARANDI R, PIHELGAS M.LogCluster-A Data Clustering and Pattern Mining Algorithm for Event Logs[C]//IEEE. 11th International Conference on Network and Service Management, November 9-13, 2015, Barcelona, Spain. New Jersey: IEEE, 2015: 1-7.
|
[3] |
NAGAPPAN M, VOUK M A.Abstracting Log Lines to Log Event Types for Mining Software System Logs[C]//IEEE. 7th IEEE Working Conference on Mining Software Repositories, May 2-3 2010, Cape Town, South Africa. New Jersey: 2010: 114-117.
|
[4] |
LIANG Tang, LI Tao, PERNG C S.LogSig: Generating System Events from Raw Textual Logs[C]//ACM. 20th ACM International Conference on Information and Knowledge Management, October 24-28, 2011, Glasgow, Scotland, UK. New York: ACM, 2011: 785-794.
|
[5] |
HAMOONI H, DEBNATH B, XU J, et al.LogMine: Fast Pattern Recognition for Log Analytics[C]//ACM. 25th ACM International on Conference on Information and Knowledge Management, October 24-28, 2016, Indianapolis, IN, USA. ACM: New York: 2016: 1573-1582.
|
[6] |
JIANG Zhenming, HASSAN A E, FLORA P, et al.Abstracting Execution Logs to Execution Events for Enterprise Applications(Short Paper)[C]//IEEE. 8th International Conference on Quality Software, August 12-13, 2008, Oxford, UK. New Jersey: IEEE, 2008: 181-186.
|
[7] |
MAKANJU A, ZINCIRHEYWOOD A N, MILIOS E E.A Lightweight Algorithm for Message Type Extraction in System Application Logs[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 11(24): 1921-1936.
|
[8] |
ZONG B, Song Qi, Min M R, et al. Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection[EB/OL]. , 2019-5-11.
|
[9] |
ANGIULLI F, PIZZUTI C.Fast Outlier Detection in High Dimensional Spaces[C]//ACM. 6th European Conference on Principles of Data Mining and Knowledge Discovery, August 19-23, 2002, Helsinki, Finland. New York: ACM, 2002: 15-27.
|
[10] |
ZIMEK A, SCHUBERT E, KRIEGEL H P.A Survey on Unsupervised Outlier Detection in High-dimensional Numerical Data[J]. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2012, 5(5): 363-387.
|
[11] |
PANG Guangsong, CAO Longbing, CHEN Ling, et al.Learning Representations of Ultrahigh-dimensional Data for Random Distance-based Outlier Detection[C]//ACM. 24th ACM SIGKDD International Conference on Knowledge Discovery and Data mining, August 19-23, 2018, London, UK. New York: ACM, 2018: 2041-2050.
|
[12] |
BREUNIG M M, KRIEGEL H P, NG R T, et al.LOF: Identifying Density-based Local Outliers[C]//ACM. 2000 ACM SIGMOD International Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA. New York: ACM, 2000: 93-104.
|
[13] |
RAMASWAMY S, RASTOGI R, SHIM K.Efficient Algorithms for Mining Outliers from Large Data Sets[J]. ACM SIGMOD Record, 2000, 29(2): 427-438.
|
[14] |
DU Min, LI Feifei, ZHENG Guineng, et al.DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning[C]//ACM. 2017 ACM SIGSAC Conference, October 30-November 3, 2017, Dallas, TX, USA. New York: ACM, 2017: 1285-1298.
|
[15] |
GAMA J, ŽLIOBAITĖ I, BIFET A, et al.A Survey on Concept Drift Adaptation[J]. ACM Computing Surveys, 2014, 46(4): 1-37.
|
[16] |
KANTCHELIAN A, AFROZ S, HUANG L, et al.Approaches to Adversarial Drift[C]//ACM. ACM Workshop on Artificial Intelligence & Security, November 4, 2013, New York, USA. New York: ACM, 2013: 99-110.
|
[17] |
THOMAS K, GRIER C, MA J, et al.Design and Evaluation of a Real-time URL Spam Filtering Service[C]//IEEE. 32nd IEEE Symposium on Security and Privacy, May 22-25, 2011, Berkeley, California, USA. New Jersey: IEEE, 2011: 447-462.
|
[18] |
VOVK V, GAMMERMAN A, SHAFER, G. Algorithmic Learning in a Random World[EB/OL]. , 2019-6-12.
|