信息网络安全 ›› 2025, Vol. 25 ›› Issue (5): 713-721.doi: 10.3969/j.issn.1671-1122.2025.05.004

• 理论研究 • 上一篇    下一篇

基于运行参数增强API序列的勒索软件动态检测方法研究

魏松杰(), 吴琴琴, 袁军翼   

  1. 南京理工大学计算机科学与工程学院,南京 210094
  • 收稿日期:2024-12-30 出版日期:2025-05-10 发布日期:2025-06-10
  • 通讯作者: 魏松杰 swei@njust.edu.cn
  • 作者简介:魏松杰(1977—),男,天津,副教授,博士,CCF高级会员,主要研究方向为网络与信息安全、移动恶意检测、软件定义网络和安全风险评估|吴琴琴(1999—),女,贵州,硕士研究生,主要研究方向为软件行为分析、恶意代码检测|袁军翼(1999—),男,江苏,硕士研究生,主要研究方向为恶意软件检测与网络安全
  • 基金资助:
    工业和信息化部2020年工业互联网创新发展工程项目(TC200H01V)

Dynamic Detection of Ransomware Based on Enhanced API Sequences with Running Parameters

WEI Songjie(), WU Qinqin, YUAN Junyi   

  1. School of Computer Science & Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2024-12-30 Online:2025-05-10 Published:2025-06-10

摘要:

基于软件运行时API调用序列的勒索软件检测技术已被广泛验证有效。但现有方法大多未充分考量API调用运行时参数对行为分析的影响,导致模型泛化能力受限。文章融合API调用对象与参数配置的双重视角,提出无监督与有监督结合的检测框架。首先,采用特征哈希技术将离散的API调用参数映射至有限可控的特征空间;然后,通过无监督预训练从海量无标签参数序列中学习丰富、复杂的语义关系;最后,利用带标签样本进行监督微调以提升检测精度。实验表明,该方法在真实数据集测试中取得0.978的准确率,检测性能显著优于同类方案。

关键词: 程序行为建模, 无监督学习, 勒索软件, 恶意软件检测, API序列

Abstract:

Current ransomware detection techniques based on API call sequence analysis have been extensively validated for their effectiveness. However, most existing solutions overlooked the impact of runtime parameters in API calls on behavioral analysis, resulting in limited generalization capabilities of the trained models. The article proposed a novel detection method that integrates both unsupervised and supervised learning approaches, considering both API call sequences and runtime parameter configurations. The proposed mechanism first employed feature hashing to map the diverse API call sequences into a finite, controllab le feature space. An unsupervised pre-training approach was then utilized to generate a model capable of learning rich, complex semantic relationships from a large corpus of unlabeled API parameter sequence samples. Subsequently, the model was fine-tuned using labeled ransomware samples to enhance its detection capability. Through extensive experiments, the proposed model achieved an accuracy of 0.978 on a real-world test dataset, demonstrating superior performance compared to other state-of-the-art detection methods.

Key words: program behavior modeling, unsupervised learning, ransomware, malware detection, API sequence

中图分类号: