信息网络安全 ›› 2024, Vol. 24 ›› Issue (9): 1432-1443.doi: 10.3969/j.issn.1671-1122.2024.09.011
收稿日期:
2024-05-20
出版日期:
2024-09-10
发布日期:
2024-09-27
通讯作者:
黎子鹏 作者简介:
余礼苏(1990—),男,江西,副教授,博士,CCF会员,主要研究方向为区块链、机器学习、无人机和可见光通信|李彪(1999—),男,江西,硕士研究生,主要研究方向为无人机|姚元志(1999—),男,江西,硕士研究生,主要研究方向为无人机和区块链|温家进(2000—),男,江西,硕士研究生,主要研究方向为无人机|黎子鹏(1991—),男,江西,讲师,博士,主要研究方向为人工智能、无人机和车联网|王振(1984—),男,江西,副教授,博士,主要研究方向为人工智能、无人机和车联网
基金资助:
YU Lisu, LI Biao, YAO Yuanzhi, WEN Jiajin, LI Zipeng(), WANG Zhen
Received:
2024-05-20
Online:
2024-09-10
Published:
2024-09-27
摘要:
在用户密集场景中,传统地面基站难以满足用户对网络速度和稳定性的需求。为此,引入无人机搭载的移动边缘计算服务器基站,不仅可缓解地面基站压力,还可以降低建设成本。然而,边缘节点交互和UAV网络的广播特性威胁数据与隐私安全。为此,文章引入区块链技术的去中心化和安全特性,提出改进的基于投票的委托权益证明共识机制,以保障UAV辅助的物联网系统通信安全。最后,以最大化总计算量为目标,联合优化用户带宽分配、UAV飞行轨迹、本地计算以及任务卸载时间分配。文章采用块坐标下降算法和连续凸逼近技术求解该优化问题,得到的仿真实验结果显示,与分别固定无人机、带宽和轨迹方案相比,文章提出的方案在计算系统数据总量上分别提升了24.51%、7.11%和4.37%。
中图分类号:
余礼苏, 李彪, 姚元志, 温家进, 黎子鹏, 王振. 区块链辅助无人机移动边缘计算系统的性能优化[J]. 信息网络安全, 2024, 24(9): 1432-1443.
YU Lisu, LI Biao, YAO Yuanzhi, WEN Jiajin, LI Zipeng, WANG Zhen. Performance Optimization of Blockchain-Assisted Unmanned Aerial Vehicle Mobile Edge Computing System[J]. Netinfo Security, 2024, 24(9): 1432-1443.
表1
仿真参数
参数含义/符号 | 取值 |
---|---|
UAV个数 | |
聚类用户个数 | |
UAV飞行周期 | |
时隙个数 | |
时隙 | |
UAV飞行高度 | |
UAV最大飞行速度 | |
UAV噪声功率 | |
参考距离 | |
GU的发射功率 | |
UAV的发射功率 | |
MEC服务器计算频率 | |
UAV的质量 | |
上行卸载链路总带宽 | |
MEC服务器的电容系数 | |
GU的电容系数 | |
MEC每 | |
GU每 |
[1] | LIU Xiaolin, WEI Bowen, LUO Yuhua, et al. Simulation and Evaluation of Obstacle Clearance of Large Power Generation Equipment Transportation Line Based on UAV LiDAR and BIM Technology[J]. Journal of Nanchang University (Engineering and Technology), 2023, 45(1): 77-84. |
刘小林, 魏博文, 罗育华, 等. 基于无人机载LiDAR与BIM技术的巨大发电装备运输线路通障模拟评估[J]. 南昌大学学报(工科版), 2023, 45(1):77-84. | |
[2] | HUANG Yangchao, AN Qi, HU Hang, et al. Sum Communication Rate Optimization in Multi-UAV Assisted Relaying System with NOMA[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(11): 105-113. |
黄仰超, 安琪, 胡航, 等. 多无人机辅助的NOMA中继系统总通信速率优化[J]. 华中科技大学学报(自然科学版), 2023, 51(11):105-113. | |
[3] |
ZHANG Tiankui, XU Yu, LIU Yuanwei, et al. UAV-Assisted MEC Systems: Architecture, Key Technology, and Future Challenges[J]. Telecommunications Science, 2022, 38(8): 3-16.
doi: 10.11959/j.issn.1000-0801.2022237 |
张天魁, 徐瑜, 刘元玮, 等. 无人机辅助MEC系统:架构、关键技术与未来挑战[J]. 电信科学, 2022, 38(8):3-16.
doi: 10.11959/j.issn.1000-0801.2022237 |
|
[4] | ZHANG Yanhua, ZHAO Chengze, LI Meng, et al. Empower MEC and Blockchain to Resource Optimization for UAV-Assisted IoT[J]. Journal of Beijing University of Technology, 2022, 48(9): 935-943. |
张延华, 赵铖泽, 李萌, 等. MEC和区块链赋能无人机辅助的物联网资源优化[J]. 北京工业大学学报, 2022, 48(9):935-943. | |
[5] | PORAMBAGE P, OKWUIBE J, LIYANAGE M, et al. Survey on Multi-Access Edge Computing for Internet of Things Realization[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2961-2991. |
[6] | ZHANG Tiankui, XU Yu, LOO J, et al. Joint Computation and Communication Design for UAV-Assisted Mobile Edge Computing in IoT[J]. IEEE Transactions on Industrial Informatics, 2019, 16(8): 5505-5516. |
[7] | NING Zhaolong, HU Hao, WANG Xiaojie, et al. Mobile Edge Computing and Machine Learning in the Internet of Unmanned Aerial Vehicles: A Survey[J]. ACM Computing Surveys, 2023, 56(1): 1-31. |
[8] | TIAN Jie, WANG Di, ZHANG Haixia, et al. Service Satisfaction-Oriented Task Offloading and UAV Scheduling in UAV-Enabled MEC Networks[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 8949-8964. |
[9] | QIN Xintong, SONG Zhengyu, HOU Tianwei, et al. Joint Optimization of Resource Allocation, Phase Shift and UAV Trajectory for Energy-Efficient RIS-Assisted UAV-Enabled MEC Systems[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(4): 1778-1792. |
[10] | CHIGULLAPALLY S, MURTHY C S R. Joint Energy and Throughput Optimization for MEC-Enabled Multi-UAV IoRT Networks[J]. Computer Communications, 2023, 201: 1-19. |
[11] | ZHENG Xiangdong, WU Yuxin, ZHANG Lianhong, et al. Priority-Aware Path Planning and User Scheduling for UAV-Mounted MEC Networks: A Deep Reinforcement Learning Approach[EB/OL]. (2023-11-01)[2024-04-30]. https://www.semanticscholar.org/paper/Priority-aware-path-planning-and-user-scheduling-A-Zheng-Wu/4ab13c9341cbf75ec2b4e150fd4d68adb2ea82ad. |
[12] | MAO Weihao, XIONG Ke, LU Yang, et al. Energy Consumption Minimization in Secure Multi-Antenna UAV-Assisted MEC Networks with Channel Uncertainty[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 7185-7200. |
[13] | LI Guoqi, HONG Sheng, LAN Xueting, et al. The Security Reference Model of the Multi-Rotor UAV System[J]. Netinfo Security, 2022, 22(3): 10-19. |
李国旗, 洪晟, 兰雪婷, 等. 多旋翼无人机系统的信息安全参考模型[J]. 信息网络安全, 2022, 22(3):10-19. | |
[14] | ZHANG Min, XU Chunxiang, ZHANG Jianhua. Research on Authentication Key Agreement Protocol Based on Multi-Factor in Internet of Drones[J]. Netinfo Security, 2022, 22(9): 21-30. |
张敏, 许春香, 张建华. 无人机网络中基于多因子的认证密钥协商协议研究[J]. 信息网络安全, 2022, 22(9):21-30. | |
[15] | CHEN C, DENG Y, ZHU Shunzhi, et al. An IoT and Blockchain Based Logistics Application of UAV[J]. Multimedia Tools and Applications, 2024, 83(1): 655-684. |
[16] | ZHOU Jie, LUO Ming, SONG Lixin, et al. A Dynamic Group Key Agreement Scheme for UAV Networks Based on Blockchain[EB/OL]. (2023-10-01)[2024-04-30]. https://dlnext.acm.org/doi/10.1016/j.pmcj.2023.101844. |
[17] | FENG Houze, WANG Jingjing, FANG Zhengru, et al. Age of Information in UAV Aided Wireless Sensor Networks Relying on Blockchain[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 12430-12435. |
[18] | HUANG Xiaoge, LIU Xin, HE Yong, et al. Research on Optimization Scheme of Task Offloading in Blockchain-Enabled Fog Networks[J]. Journal of Electronics and Information Technology, 2022, 44(7): 2440-2448. |
黄晓舸, 刘鑫, 何勇, 等. 基于区块链的雾网络中的任务卸载优化方案研究[J]. 电子与信息学报, 2022, 44(7):2440-2448. | |
[19] | SINAGA K P, KRISTINA P, MIIN-SHEN Y. Unsupervised K-Means Clustering Algorithm[J]. IEEE Access, 2020, 8: 80716-80727. |
[20] |
XIONG Jingyu, GUO Hongzhi, LIU Jiajia. Task Offloading in UAV-Aided Edge Computing: Bit Allocation and Trajectory Optimization[J]. IEEE Communications Letters, 2019, 23(3): 538-541.
doi: 10.1109/LCOMM.2019.2891662 |
[21] | KUMAR G, SAHA R, RAI M K, et al. Proof-of-Work Consensus Approach in Blockchain Technology for Cloud and Fog Computing Using Maximization-Factorization Statistics[J]. IEEE Internet of Things Journal, 2019, 6(4): 6835-6842. |
[22] | WANG Siming, YE Dongdong, HUANG Xumin, et al. Consortium Blockchain for Secure Resource Sharing in Vehicular Edge Computing: A Contract-Based Approach[J]. IEEE Transactions on Network Science and Engineering, 2020, 8(2): 1189-1201. |
[23] | XU Chenhan, WANG Kun, LI Peng, et al. Making Big Data Open in Edges: A Resource-Efficient Blockchain-Based Approach[J]. IEEE Transactions on Parallel and Distributed Systems, 2018, 30(4): 870-882. |
[1] | 吕秋云, 周凌飞, 任一支, 周士飞, 盛春杰. 一种全生命周期可控的公共数据共享方案[J]. 信息网络安全, 2024, 24(8): 1291-1305. |
[2] | 张继威, 王文俊, 牛少彰, 郭向阔. 区块链扩展解决方案:ZK-Rollup综述[J]. 信息网络安全, 2024, 24(7): 1027-1037. |
[3] | 郭瑞, 杨鑫, 王俊茗. 基于区块链的可验证可撤销属性加密方案[J]. 信息网络安全, 2024, 24(6): 863-878. |
[4] | 凌治, 杨明, 余江银. 基于IPFS和区块链技术的电力安全交易平台研究[J]. 信息网络安全, 2024, 24(6): 968-976. |
[5] | 田钊, 牛亚杰, 佘维, 刘炜. 面向车联网的车辆节点信誉评估方法[J]. 信息网络安全, 2024, 24(5): 719-731. |
[6] | 石润华, 杨婧怡, 王鹏博, 刘华伟. V2G中基于区块链的在线/离线跨域身份认证方案[J]. 信息网络安全, 2024, 24(4): 587-601. |
[7] | 胡海洋, 刘畅, 王栋, 魏旭. 基于区块链的清洁能源数据溯源机制[J]. 信息网络安全, 2024, 24(4): 626-639. |
[8] | 薛茗竹, 胡亮, 王明, 王峰. 基于联邦学习和区块链技术的TAP规则处理系统[J]. 信息网络安全, 2024, 24(3): 473-485. |
[9] | 翟鹏, 何泾沙, 张昱. 物联网环境下基于SM9算法和区块链技术的身份认证方法[J]. 信息网络安全, 2024, 24(2): 179-187. |
[10] | 何业锋, 权家辉, 刘妍. 基于混合区块链的位置隐私保护方案[J]. 信息网络安全, 2024, 24(2): 229-238. |
[11] | 王南, 袁也, 杨浩然, 文周之, 苏明, 刘晓光. 环保大数据在区块链中的隐私计算[J]. 信息网络安全, 2024, 24(10): 1515-1527. |
[12] | 吴昊天, 李一凡, 崔鸿雁, 董琳. 基于零知识证明和区块链的联邦学习激励方案[J]. 信息网络安全, 2024, 24(1): 1-13. |
[13] | 朱郭诚, 何德彪, 安浩杨, 彭聪. 基于区块链和SM9数字签名的代理投票方案[J]. 信息网络安全, 2024, 24(1): 36-47. |
[14] | 公鹏飞, 谢四江, 程安东. 基于HotStuff改进的多主节点共识算法[J]. 信息网络安全, 2023, 23(9): 108-117. |
[15] | 周权, 陈民辉, 卫凯俊, 郑玉龙. 基于SM9的属性加密的区块链访问控制方案[J]. 信息网络安全, 2023, 23(9): 37-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||