信息网络安全 ›› 2024, Vol. 24 ›› Issue (7): 1027-1037.doi: 10.3969/j.issn.1671-1122.2024.07.005
收稿日期:
2024-02-02
出版日期:
2024-07-10
发布日期:
2024-08-02
通讯作者:
王文俊 作者简介:
张继威(1989—),男,河南,讲师,博士,CCF会员,主要研究方向为多媒体安全、区块链取证、计算机视觉|王文俊(2000—),男,河南,硕士研究生,主要研究方向为区块链隐私计算、零知识证明|牛少彰(1963—),男,河北,教授,博士,主要研究方向为网络信息安全、移动大数据应用与安全、工业互联网安全、移动通信安全、计算机取证及云安全|郭向阔(1987—),男,河北,讲师,硕士,主要研究方向为网络安全。
基金资助:
ZHANG Jiwei1, WANG Wenjun1(), NIU Shaozhang1, GUO Xiangkuo2
Received:
2024-02-02
Online:
2024-07-10
Published:
2024-08-02
摘要:
近年来,全球区块链应用系统市场取得了显著进展。随着区块链技术在金融、医疗、能源和物联网等领域的广泛应用,交易数量急剧增加,扩展性和交易费用等问题越来越突出。为解决这些问题,Layer-1和Layer-2扩展技术应运而生。文章概述了Layer-1层级解决方案,并对Layer-2层级的不同解决方案进行了重点分析。特别关注了ZK-Rollup方案,详细探讨了其原理,并分析了其在提升可扩展性和降低交易费用方面的优势。针对ZK-Rollup技术所面临的一些问题,文章提出了可能的改进和优化方案,旨在为提升区块链可扩展性和交易效率提供新的思路和方法。
中图分类号:
张继威, 王文俊, 牛少彰, 郭向阔. 区块链扩展解决方案:ZK-Rollup综述[J]. 信息网络安全, 2024, 24(7): 1027-1037.
ZHANG Jiwei, WANG Wenjun, NIU Shaozhang, GUO Xiangkuo. Blockchain Scaling Solutions: ZK-Rollup Review[J]. Netinfo Security, 2024, 24(7): 1027-1037.
表3
NIZK各应用方案性能比较
可信 设置 | 证明者算法复杂度 | 验证者时间复杂度 | 证明 大小 /B | 生成证明时间 /s | 验证证明时间/ms | 参考 文献 | |
---|---|---|---|---|---|---|---|
ZK-SNARKs | 需要 | O(nlogn) | O(1) | 288 | 2.3 | 10 | [ |
Bulletproofs | 不需要 | O(nlogn) | O(n) | 1000 | 30 | 1100 | [ |
Sonic | 需要 | O(nlogn) | O(logn) | 2000 | 5 | 100 | [ |
ZK-STARKs | 不需要 | O(npoly-logn) | O(poly-logn) | 45000 | 1.6 | 16 | [ |
Plonk | 需要 | O(nlogn) | O(1) | 1000 | 4 | 50 | [ |
表5
各ZK-Rollup应用比较
编程 语言 | 兼容性 | 交易费类型 | 零知识 证明算法 | 支付 费用 /美元 | 交换费用 /美元 | 支付费用节 省率 | 交换费用节 省率 | |
---|---|---|---|---|---|---|---|---|
Polygon ZKEVM | Solidity | 完全兼容EVM | 仅限ETH | ZK-STARKS/ZK-SNARKS | 0.12 | 1.68 | 88% | 32% |
Loopring | Solidity | 不兼容EVM | 任何ERC-20代币 | ZK-SNARKS | 0.03 | 0.62 | 97% | 88% |
Scroll | Solidity | 完全兼容EVM | 仅限ETH | ZK-SNARKS | N/A | N/A | N/A | N/A |
ZKSync Era | Yul | 仅语言兼容 | 任何ERC-20代币 | ZK-SNARKS | 0.05 | N/A | 95% | N/A |
StarkNet | Cairo | 仅语言兼容 | STRK或者ETH | ZK-STARKS | 0.11 | 0.36 | 89% | 93% |
表6
ZK-Rollup优化方案
优化类型 | 优点 | 缺点 | 方案举例 | 方案所用算法 |
---|---|---|---|---|
优化加密 算法 | 提高零知识证明生成的速度 | 需要更复杂的技术和 资源 | Polygon Zero[ | Plonky2[ |
混合Optimistic Rollup和ZK Rollup | 实现更高的吞吐量和更低的费用 | 需要更复杂的协议和 协调 | Polygon Nightfall[ | Nightfall[ |
开发专门的ZK-evm | 扩展Ethereum的功能和 兼容性 | 技术复杂 | AppliedZKp[ | KZG[ Halo2[ BN-254[ |
Polygon Hermez[ | Groth16[ plonk[ KZG[ | |||
Polygon Miden[ | STARK Based ZK VM[ | |||
硬件优化 | 提高效率和 性能 | 需要更高的硬件成本和维护成本 | DIZK[ | Distributed ZKSNARK[ |
HardAcc- Groth16[ | Groth16[ | |||
CPU/GPUAcc - Bulletproof[ | Bulletproof [ | |||
PipeMSM[ | PipeMSM[ |
[1] | NAKAMOTO S. Bitcoin: A Peer-to-Peer Electronic Cash System[EB/OL]. (2008-11-01)[2023-11-15]. https://bitcoin.org/bitcoin.pdf. |
[2] | WANG Huaimin, ZHENG Zibin, XIE Shaoan, et al. Blockchain Challenges and Opportunities: A Survey[J]. International Journal of Web and Grid Services, 2018, 14(4): 352-375. |
[3] | SANKA A I, CHEUNG R C C. A Systematic Review of Blockchain Scalability: Issues, Solutions, Analysis and Future Research[J]. Journal of Network and Computer Applications, 2021, 1959(12): 1-25. |
[4] | KAUR M, KHAN M Z, GUPTA S, et al. MBCP: Performance Analysis of Large Scale Mainstream Blockchain Consensus Protocols[J]. IEEE Access, 2021, 9: 80931-80944. |
[5] | GURU A, MOHANTA B K, MOHAPATRA H, et al. A Survey on Consensus Protocols and Attacks on Blockchain Technology[J]. Applied Sciences, 2023, 13(4): 1-21. |
[6] | HAN Runchao, YU Jiangshan, LIN Haoyu, et al. On the Security and Performance of Blockchain Sharding[J]. IACR Cryptol EPrint Arch, 2021, 1276(9): 1-15. |
[7] | GUDGEON L, MORENO-SANCHEZ P, ROOS S, et al. SoK: Layer-Two Blockchain Protocols[C]// Springer. Financial Cryptography and Data Security:24th International Conference, FC 2020. Heidelberg: Springer, 2020: 201-226. |
[8] | GANGWAL A, GANGAVALLI H R, THIRUPATHI A. A Survey of Layer-Two Blockchain Protocols[J]. Journal of Network and Computer Applications, 2023, 209(1): 1-17. |
[9] | LI Yang, MEN Jinbao, YU Han, et al. Overview of Blockchain Capacity Expansion Technology[J]. Electric Power Information and Communication Technology, 2020, 18(6): 1-9. |
李洋, 门进宝, 余晗, 等. 区块链扩容技术研究综述[J]. 电力信息与通信技术, 2020, 18(6): 1-9. | |
[10] | XU Jie, WANG Cong, JIA Xiaohua. A Survey of Blockchain Consensus Protocols[J]. ACM Computing Surveys, 2023, 55(13s): 1-35. |
[11] | HONG Zicong, GUO Song, LI Peng. Scaling Blockchain via Layered Sharding[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(12): 3575-3588. |
[12] | BACK A, CORALLO M, DASHJR L, et al. Enabling Blockchain Innovations with Pegged Sidechains[EB/OL]. (2014-09-12)[2023-11-25]. http://www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-pegged-sidechains. |
[13] | ETHEREUM Org. Sidechains[EB/OL]. [2024-01-31]. https://ethereum.org/en/developers/docs/scaling/sidechains/. |
[14] | HEWA T, YLIANTTILA M, LIYANAGE M. Survey on Blockchain Based Smart Contracts: Applications, Opportunities and Challenges[J]. Journal of Network and Computer Applications, 2021, 177(3): 1-39. |
[15] | COLEMAN J. State Channels[EB/OL]. (2015-11-06)[2024-01-09]. https://www.jeffcoleman.ca/state-channels/ |
[16] | GRAU P. Lessons Learned From Making a Chess Game for Ethereum[EB/OL]. (2016-09-03)[2024-01-02]. https://medium.com/@graycoding/lessons-learned-from-making-a-chess-game-for-ethereum-6917c01178b6. |
[17] | ZHAO Sijia, O’MAHONY D. Applying Blockchain Layer2 Technology to Mass E-Commerce[J]. IACR Cryptol EPrint Arch, 2020, 502(4): 1-30. |
[18] | NEGKA L D, SPATHOULAS G P. Blockchain State Channels: A State of the Art[J]. IEEE Access, 2021, 9: 160277-160298. |
[19] | POON J, BUTERIN V. Plasma: Scalable Autonomous Smart Contracts[J]. White Paper, 2017: 1-47. |
[20] | THIBAULT L T, SARRY T, HAFID A S. Blockchain Scaling Using Rollups: A Comprehensive Survey[J]. IEEE Access, 2022, 10(8): 93039-93054. |
[21] | NEIHEISER R, INÁCIO G, RECH L, et al. Practical Limitations of Ethereum’s Layer-2[J]. IEEE Access, 2023, 11(1): 8651-8662. |
[22] | OPTIMISM FOUNDATION. Optimism[EB/OL]. (2023-11-15)[2024-01-02]. https://www.optimism.io/. |
[23] | ARBITRUM FOUNDATION. Arbitrum[EB/OL]. (2023-11-15)[2024-01-31]. https://arbitrum.io/. |
[24] | LAVAUR T, DETCHART J, LACAN J, et al. Modular ZK-Rollup On-Demand[J]. Journal of Network and Computer Applications, 2023, 217(8): 1-9. |
[25] | BUTERIN V. The Dawn of Hybrid Layer 2 Protocols[EB/OL]. (2019-08-28)[2024-01-01]. https://alidevjimmy.github.io/general/2019/08/28/hybrid-layer-2.html. |
[26] | BUTERIN V, CONNER E, DUDLEY R, et al. EIP-1559: Fee Market Change for ETH 1.0 Chain[EB/OL]. (2019-04-13)[2023-11-29]. https://eips.ethereum.org/EIPS/eip-1559. |
[27] | YCHARTS FOUNDATION. Ycharts[EB/OL]. (2023-03-19)[2023-11-29]. https://get.ycharts.com/platform/data/. |
[28] | BUTERIN V. EIP-4844: Shard Blob Transactions[EB/OL]. (2022-02-25)[2024-01-02]. https://eips.ethereum.org/EIPS/eip-4844. |
[29] | HUANG Chengpeng, SONG Rui, GAO Shang, et al. Data Availability and Decentralization: New Techniques for Zk-Rollups in Layer 2 Blockchain Networks[J]. ArXiv Preprint, 2024, 10828(3): 1-14. |
[30] | GOLDWASSER S MIT, MICALI S, et al. The Knowledge Complexity of Interactive Proof-Systems[C]//ACM. Providing Sound Foundations for Cryptography:On the Work of Shafi Goldwasser and Silvio Micali. New York: ACM, 2019, 203-225. |
[31] | GROTH J. Short Pairing-Based Non-Interactive Zero-Knowledge Arguments[C]// Springer. Advances in Cryptology-ASIACRYPT 2010. Heidelberg: Springer, 2010: 321-340. |
[32] | BEN-SASSON E, BENTOV I, HORESH Y, et al. Scalable, Transparent, and Post-Quantum Secure Computational Integrity[EB/OL]. (2018-03-06)[2024-01-19]. https://eprint.iacr.org/2018/046.pdf. |
[33] | BÜNZ B, BOOTLE J, BONEH D, et al. Bulletproofs: Short Proofs for Confidential Transactions and More[C]// IEEE. 2018 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2018: 315-334. |
[34] | MALLER M, BOWE S, KOHLWEISS M, et al. Sonic: Zero-Knowledge SNARKs from Linear-Size Universal and Updatable Structured Reference Strings[C]// ACM. Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2019: 2111- 2128. |
[35] | GABIZON A, WILLIAMSON Z J, CIOBOTARU O. Plonk: Permutations over Lagrange-Bases for Oecumenical Noninteractive Arguments of Knowledge[EB/OL]. (2019-08-21)[2024-01-10]. https://eprint.iacr.org/2019/953.pdf. |
[36] | SEFRANEK M. How to Simulate PLONK: A Formal Security Analysis of a ZK-SNARK[D]. Wienna: Technical University of Wienna, 2023. |
[37] | MATTER LABS. Zero-Knowledge-Proofs[EB/OL]. (2023-03-19)[2023-12-16]. https://github.com/matter-labs/awesome-zero-knowledge-proofs. |
[38] | BEN-SASSON E, BENTOV I, HORESH Y, et al. Scalable, Transparent, and Post-Quantum Secure Computational Integrity[J]. IACR Cryptol EPrint Arch, 2018, 46(3): 1-83. |
[39] | BITANSKY N, CANETTI R, CHIESA A, et al. Recursive Composition and Bootstrapping for SNARKS and Proof-Carrying Data[C]// ACM. Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing. New York: ACM, 2013: 111-120. |
[40] | MATTER LABS. Zkporter: A Breakthrough in L2 Scaling[EB/OL]. (2021-04-13)[2023-11-15]. https://blog.matter-labs.io/zkporter-a-breakthrough-inl2-scaling-ed5e48842fbf. |
[41] | WANG D, ZHOU J, WANG A, et al. Loopring: A Decentralized Token Exchange Protocol[EB/OL]. (2018-05-11)[2023-11-15]. https://github.com/Loopring/whitepaper/blob/master/en_whitepaper.pdf. |
[42] | LOOPRING FOUNDATION. Loopring_v3[EB/OL]. (2021-06-26)[2023-11-15]. https://github.com/Loopring/protocols/blob/master/packages/loopring_v3/. |
[43] | POLYGON-HERMEZ. Polygon-Hermez-Whitepaper[EB/OL]. (2018-04-06)[2023-11-15]. https://hermez.io/polygon-hermez-whitepaper.pdf. |
[44] | STARKEX FOUNDATION. StarkEX[EB/OL]. (2013-06-15)[2023-11-15]. https://docs.starkware.co/starkex/transaction_throughput.html. |
[45] | DAVID Mihal. l2fees[EB/OL]. (2023-12-05)[2024-01-31]. https://l2fees.info/. |
[46] | POLYGON ZERO. Plonky2[EB/OL]. (2023-11-30)[2023-12-05]. https://github.com/mirprotocol/plonky2. |
[47] | POLYGON FOUNDATION. Polygon Nightfall[EB/OL]. (2023-11-05)[2024-01-29]. https://blog.polygon.technology/zk-proofs-protocol-polygonnightfall-launches-on-testnet-to-provide-low-cost-private-ethereumtransaction/. |
[48] | APPLIED ZKP FOUNDATION. Applied ZKP[EB/OL]. (2021-11-05)[2023-12-05]. https://github.com/appliedzkp. |
[49] | SYN7Y. Exploring Popular zkEVM Solutions: AppliedZKP, Matter Labs, Hermez, and Sin7Y[EB/OL]. (2021-08-24)[2023-12-05]. https://hackernoon.com/exploring-popular-zkevm-solutions-appliedzkp-matter-labs-hermez-and-sin7y-quick-publication-ltq37ah. |
[50] | POLYGON MIDEN. Miden[EB/OL]. (2023-08-24)[2023-12-05]. https://github.com/maticnetwork/miden. |
[51] | WU Howard, ZHENG Wenting, CHIESA A, et al. DIZK: A Distributed Zero Knowledge Proof System[C]// USENIX.27th USENIX Security Symposium (USENIX Security 18). New York: USENIX, 2018: 675-692. |
[52] | KATE A, ZAVERUCHA G M, GOLDBERG I. Constant-Size Commitments to Polynomials and Their Applications[C]// Springer. Advances in Cryptology-ASIACRYPT 2010: 16th International Conference on the Theory and Application of Cryptology and Information Security. Heidelberg: Springer, 2010: 177-194. |
[53] | HOPWOOD D, BOWE S, GRIGG J, et al. The Halo2 Book[EB/OL]. (2021-11-05)[2023-12-05]. https://zcash.github.io/halo2/. |
[54] | BARRETO P S L M, NAEHRIG M. Pairing-Friendly Elliptic Curves of Prime Order[C]// Springer. Selected Areas in Cryptography. Heidelberg: Springer, 2006: 319-331. |
[55] | GROTH J. On the Size of Pairing-Based Non-Interactive Arguments[C]// Springer. Advances in Cryptology-EUROCRYPT 2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Heidelberg: Springer, 2016: 305-326. |
[56] | BEB-SASSON E, BENTOV I, HORESH Y, et al. Scalable, Transparent, and Post-Quantum Secure Computational Integrity[EB/OL]. (2018-03-22)[2023-12-05]. https://www.xueshufan.com/publication/2794982701. |
[57] | XAVIER C F. Pipemsm: Hardware aCeleration for Multi-Scalar Multiplication[EB/OL]. (2022-08-03)[2024-01-19]. https://eprint.iacr.org/2022/999. |
[58] | PENG B O, ZHU Yongxin, JING Naifeng, et al. Design of a Hardware Accelerator for Zero-Knowledge Proof in Blockchains[C]// Springer. Smart Computing and Communication:5th International Conference. Heidelberg: Springer, 2021: 136-145. |
[59] | ZHANG Ye, WANG Shuo, ZHANG Xian, et al. PipeZK: Accelerating Zero-Knowledge Proof with a Pipelined Architecture[C]// IEEE. 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). New York: IEEE, 2021: 416-428. |
[1] | 郭瑞, 杨鑫, 王俊茗. 基于区块链的可验证可撤销属性加密方案[J]. 信息网络安全, 2024, 24(6): 863-878. |
[2] | 凌治, 杨明, 余江银. 基于IPFS和区块链技术的电力安全交易平台研究[J]. 信息网络安全, 2024, 24(6): 968-976. |
[3] | 田钊, 牛亚杰, 佘维, 刘炜. 面向车联网的车辆节点信誉评估方法[J]. 信息网络安全, 2024, 24(5): 719-731. |
[4] | 石润华, 杨婧怡, 王鹏博, 刘华伟. V2G中基于区块链的在线/离线跨域身份认证方案[J]. 信息网络安全, 2024, 24(4): 587-601. |
[5] | 胡海洋, 刘畅, 王栋, 魏旭. 基于区块链的清洁能源数据溯源机制[J]. 信息网络安全, 2024, 24(4): 626-639. |
[6] | 薛茗竹, 胡亮, 王明, 王峰. 基于联邦学习和区块链技术的TAP规则处理系统[J]. 信息网络安全, 2024, 24(3): 473-485. |
[7] | 翟鹏, 何泾沙, 张昱. 物联网环境下基于SM9算法和区块链技术的身份认证方法[J]. 信息网络安全, 2024, 24(2): 179-187. |
[8] | 何业锋, 权家辉, 刘妍. 基于混合区块链的位置隐私保护方案[J]. 信息网络安全, 2024, 24(2): 229-238. |
[9] | 吴昊天, 李一凡, 崔鸿雁, 董琳. 基于零知识证明和区块链的联邦学习激励方案[J]. 信息网络安全, 2024, 24(1): 1-13. |
[10] | 朱郭诚, 何德彪, 安浩杨, 彭聪. 基于区块链和SM9数字签名的代理投票方案[J]. 信息网络安全, 2024, 24(1): 36-47. |
[11] | 公鹏飞, 谢四江, 程安东. 基于HotStuff改进的多主节点共识算法[J]. 信息网络安全, 2023, 23(9): 108-117. |
[12] | 周权, 陈民辉, 卫凯俊, 郑玉龙. 基于SM9的属性加密的区块链访问控制方案[J]. 信息网络安全, 2023, 23(9): 37-46. |
[13] | 赵佳豪, 蒋佳佳, 张玉书. 基于动态默克尔哈希树的跨链数据一致性验证模型[J]. 信息网络安全, 2023, 23(9): 95-107. |
[14] | 邵震哲, 蒋佳佳, 赵佳豪, 张玉书. 面向跨链的改进加权拜占庭容错算法[J]. 信息网络安全, 2023, 23(8): 109-120. |
[15] | 覃思航, 代炜琦, 曾海燕, 顾显俊. 基于区块链的电力应用数据安全共享研究[J]. 信息网络安全, 2023, 23(8): 52-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||