信息网络安全 ›› 2024, Vol. 24 ›› Issue (5): 694-708.doi: 10.3969/j.issn.1671-1122.2024.05.004
收稿日期:
2023-12-07
出版日期:
2024-05-10
发布日期:
2024-06-24
通讯作者:
顾国民
E-mail:ggm@zjut.edu.cn
作者简介:
顾国民(1981—),男,浙江,实验师,硕士,主要研究方向为嵌入式系统、图像处理、网络与信息安全|陈文浩(1999—),男,浙江,硕士研究生,主要研究方向为网络与信息安全|黄伟达(1996—),男,浙江,硕士研究生,主要研究方向为网络与信息安全
基金资助:
GU Guomin(), CHEN Wenhao, HUANG Weida
Received:
2023-12-07
Online:
2024-05-10
Published:
2024-06-24
Contact:
GU Guomin
E-mail:ggm@zjut.edu.cn
摘要:
高级持续威胁APT攻击为了躲避检测,攻击者往往采用加密恶意流量和隐蔽隧道等策略隐匿恶意行为,从而增加检测的难度。目前大多数检测DNS隐蔽隧道的方法基于统计、频率、数据包等特征,这种方法不能很好地进行实时检测,从而导致数据泄露,因此,需要根据单个DNS请求进行检测而不是对流量进行统计后再检测,才能够实现实时且可靠的检测,当系统判定单个DNS请求为隧道流量,便可做出响应,进而避免数据泄露。而现有的加密恶意检测方法存在无法完整提取流量特征信息、提取特征手段单一、特征利用少等问题。因此,文章提出了基于多模型融合的隐蔽隧道加密恶意流量检测方法。对于DNS隐蔽隧道,文章提出了MLP、1D-CNN、RNN模型融合的检测方法并根据提出的数学模型计算融合结果,该方法能够对隐蔽隧道实时监测,进一步提高检测的整体准确率。对于加密恶意流量,文章提出了1D-CNN、LSTM模型的并行融合的检测方法,并行融合模型能够更加全面地提取特征信息,反应流量数据的全貌,进而提高模型的检测精度。
中图分类号:
顾国民, 陈文浩, 黄伟达. 一种基于多模型融合的隐蔽隧道和加密恶意流量检测方法[J]. 信息网络安全, 2024, 24(5): 694-708.
GU Guomin, CHEN Wenhao, HUANG Weida. A Covert Tunnel and Encrypted Malicious Traffic Detection Method Based on Multi-Model Fusion[J]. Netinfo Security, 2024, 24(5): 694-708.
[1] |
REZAEI S, LIU XIN. Deep Learning for Encrypted Traffic Classification: An Overview[J]. IEEE Communications Magazine, 2019, 57(5): 76-81.
doi: 10.1109/MCOM.2019.1800819 |
[2] | TANG Zhengzhi, ZENG Xuewen, GUO Zhichuan, et al. Malware Traffic Classification Based on Recurrence Quantification Analysis[J]. International Journal of Networking and Security, 2020, 22(3): 449-459. |
[3] | WU Kemeng, ZHANG Yongzheng, TAO Yin. TDAE: Autoencoder-Based Automatic Feature Learning Method for the Detection of DNS Tunnel[C]// IEEE. 2020 IEEE International Conference on Communications (ICC)2020. New York: IEEE, 2020: 1-7. |
[4] | YAN Chuyu, GAO Songfeng, WANG Baohui. Research on Encrypted Malicious Traffic Detection[J]. New Industrialization, 2021, 11(10): 59-61. |
闫楚玉, 高嵩峰, 王宝会. 加密恶意流量检测研究[J]. 新型工业化, 2021, 11(10):59-61. | |
[5] | ANDERSON B, MCGREW D. Identifying Encrypted Malware Traffic with Contextual Flow Data[C]// ACM. Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security. New York: ACM, 2016: 35-46. |
[6] | LI Yanmiao, GUO Hao, HOU Jiangang, et al. A Survey of Encrypted Malicious Traffic Detection[C]// IEEE. 2021 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI). New York: IEEE, 2021: 1-7. |
[7] | WANG Wei, ZHU Ming, ZENG Xuewen, et al. Malware Traffic Classification Using Convolutional Neural Network for Representation Learning[C]// IEEE. 2017 International Conference on Information Networking (ICOIN). New York: IEEE, 2017: 712-717. |
[8] | RADIVILOVA T, KIRICHENKO L, AGEYEV D, et al. Decrypting SSL/TLS Traffic for Hidden Threats Detection[C]// IEEE. 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT). New York: IEEE, 2018: 143-146. |
[9] | KILIC F, ECKERT C. iDeFEND: Intrusion Detection Framework for Encrypted Network Data[C]// Springer. Cryptology and Network Security. Heidelberg: Springer, 2015: 111-118. |
[10] | ZHANG Han, PAPADOPOULOS C, MASSEY D. Detecting Encrypted Botnet Traffic[C]// IEEE. 2013 Proceedings IEEE INFOCOM. New York: IEEE, 2013: 3453-3458. |
[11] | HU Bin. Research on Detection of Malicious SSL/TLS Encrypted Traffic[D]. Shanghai: Shanghai Jiao Tong University, 2020. |
胡斌. 恶意 SSL/TLS 加密流量检测研究[D]. 上海: 上海交通大学, 2020. | |
[12] | SHEKHAWAT A S. Analysis of Encrypted Malicious Traffic[EB/OL]. (2018-05-18)[2023-09-05]. https://scholarworks.sjsu.edu/etd_projects/622/. |
[13] | LEE I, ROH H, LEE W. Encrypted Malware Traffic Detection Using Incremental Learning[C]// IEEE. IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). New York: IEEE, 2020: 1348-1349. |
[14] | LI Li, REN Yifei, LOU Jiapeng. A Method for Malicious Encrypted Traffic Detection Based on Ensemble Learning[J]. Journal of Beijing Electronic Science and Technology Institute, 2021, 29(2): 8-16. |
李莉, 任逸飞, 娄嘉鹏. 一种基于集成学习的恶意加密流量检测方法[J]. 北京电子科技学院学报, 2021, 29(2):8-16. | |
[15] | LUO Ziming, XU Shubin, LIU Xiaodong. A TLS Malicious Encrypted Traffic Detection Scheme Based on Machine Learning[J]. Journal of Network and Information Security, 2020, 6(1): 77-83. |
骆子铭, 许书彬, 刘晓东. 基于机器学习的TLS恶意加密流量检测方案[J]. 网络与信息安全学报, 2020, 6(1):77-83. | |
[16] | JIANG Peng. Analysis and Detection of C&C Encrypted Channel Network Behavior Under APT Attacks[D]. Shanghai: Shanghai Normal University, 2018. |
姜鹏. APT 攻击下的 C&C 加密信道网络行为分析与检测[D]. 上海: 上海师范大学, 2018. | |
[17] | PRASSE P, MACHLICA L, PEVNÝ T, et al. Malware Detection by Analysing Network Traffic with Neural Networks[C]// IEEE. 2017 IEEE Security and Privacy Workshops (SPW). New York: IEEE, 2017: 205-210. |
[18] | CHEN Lin, JIANG Yixi, KUANG Xiaoyun, et al. Deep Learning Detection Method of Encrypted Malicious Traffic for Power Grid[C]// IEEE. 2020 IEEE International Conference on Energy Internet (ICEI). New York: IEEE, 2020: 86-91. |
[19] | ZENG Yi, GU Huaxi, WEI Wenting, et al. $ Deep-Full-Range $: A Deep Learning Based Network Encrypted Traffic Classification and Intrusion Detection Framework[J]. IEEE Access, 2019, 7: 45182-45190. |
[20] | WANG Yue, ZHOU Anmin, LIAO Shan, et al. A Comprehensive Survey on DNS Tunnel Detection[EB/OL]. (2021-10-09)[2023-09-07]. https://www.sciencedirect.com/science/article/pii/S1389128621003248. |
[21] | CROTTI M, DUSI M, GRINGOLI F, et al. Detecting Http Tunnels with Statistical Mechanisms[C]// IEEE. 2007 IEEE International Conference on Communications. New York: IEEE, 2007: 6162-6168. |
[22] | DUSI M, CROTTI M, GRINGOLI F, et al. Tunnel Hunter: Detecting Application-Layer Tunnels with Statistical Fingerprinting[J]. Computer Networks, 2009, 53(1): 81-97. |
[23] | CASAS P, MAZEL J, OWEZARSKI P. MINETRAC: Mining Flows for Unsupervised Analysis & Semi-Supervised Classification[C]// IEEE. 2011 23rd International Teletraffic Congress (ITC). New York: IEEE, 2011: 87-94. |
[24] | WANG Hao. Research on Anomaly DNS Traffic Detection Based on Machine Learning[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019. |
王浩. 基于机器学习的异常 DNS 流量检测研究[D]. 南京: 南京邮电大学, 2019. | |
[25] | SAKARKAR G, KOLEKAR M K H, PAITHANKAR K, et al. Advance Approach for Detection of DNS Tunneling Attack from Network Packets Using Deep Learning Algorithms[J]. Advances in Distributed Computing and Artificial Intelligence Journal, 2021, 10(3): 241-266. |
[26] | SHERIDAN S, KEANE A. Detection of DNS Based Covert Channels[EB/OL]. (2015-01-01)[2023-09-05]. https://www.researchgate.net/publication/282931276_Detection_of_DNS_based_covert_channels. |
[27] | LIU Xiaolei, ZHANG Qiongyin, REN Lei, et al. Exploration of DNS Tunneling Trojan Detection Technology Based on Communication Behavior Analysis[J]. Science and Technology Information, 2018, 16(34): 17-18. |
刘晓蕾, 张琼尹, 任磊, 等. 基于通信行为分析的DNS隧道木马检测技术探究[J]. 科技资讯, 2018, 16(34):17-18. | |
[28] | NADLER A, AMINOV A, SHABTAI A. Detection of Malicious and Low Throughput Data Exfiltration over the DNS Protocol[J]. Computers & Security, 2019, 80: 36-53. |
[29] | QI Cheng, CHEN Xiaojun, XU Cui, et al. A Bigram Based Real Time DNS Tunnel Detection Approach[J]. Procedia Computer Science, 2013, 17: 852-860. |
[30] | YU Bin, SMITH L, THREEFOOT M, et al. Behavior Analysis Based DNS Tunneling Detection and Classification with Big Data Technologies[C]// IoTBD. Behavior Analysis Based DNS Tunneling Detection and Classification with Big Data Technologies. Rome: IoTBD, 2016: 284-290. |
[31] | CHEN Shaojie, LANG Bo, LIU Hongyu, et al. DNS Covert Channel Detection Method Using the LSTM Model[EB/OL]. (2021-01-28)[2023-09-05]. https://www.sciencedirect.com/science/article/pii/S0167404820303680. |
[32] | WANG Qi, XIE Kun, MA Yan, et al. DNS Tunnel Detection Based on Log Statistical Features[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(9): 1753-1760. |
王琪, 谢坤, 马严, 等. 基于日志统计特征的 DNS 隧道检测[J]. 浙江大学学报(工学版), 2020, 54(9):1753-1760. | |
[33] | LIN Huaqing, LIU Gao, YAN Zheng. Detection of Application-Layer Tunnels with Rules and Machine Learning[C]// Springer. International Conference on Security, Privacy and Anonymity in Computation, Communication and Storage. Heidelberg: Springer, 2019: 441-455. |
[34] |
ZHANG Meng, SUN Haoliang, YANG Peng. DNS Covert Channel Recognition Based on Improved Convolutional Neural Network[J]. Journal on Communications, 2020, 41(1): 169-179.
doi: 10.11959/j.issn.1000-436x.2020017 |
张猛, 孙昊良, 杨鹏. 基于改进卷积神经网络识别 DNS 隐蔽信道[J]. 通信学报, 2020, 41(1):169-179.
doi: 10.11959/j.issn.1000-436x.2020017 |
|
[35] | FARNHAM G, ATLASIS A. Detecting DNS Tunneling[J]. SANS Institute InfoSec Reading Room, 2013, 9: 1-32. |
[36] | CHEN Yang, LI Xiaoyong. A High Accuracy DNS Tunnel Detection Method without Feature Engineering[C]// IEEE. 2020 16th International Conference on Computational Intelligence and Security (CIS). New York: IEEE, 2020: 374-377. |
[37] | GARCIA S, GRILL M, STIBOREK J, et al. An Empirical Comparison of Botnet Detection Methods[J]. Computers & Security, 2014, 45: 100-123. |
[1] | 文伟平, 张世琛, 王晗, 时林. 基于虚拟机自省的Linux恶意软件检测方案[J]. 信息网络安全, 2024, 24(5): 657-666. |
[2] | 李志华, 陈亮, 卢徐霖, 方朝晖, 钱军浩. 面向物联网Mirai僵尸网络的轻量级检测方法[J]. 信息网络安全, 2024, 24(5): 667-681. |
[3] | 杨志鹏, 王鹃, 马陈军, 亢云峰. 基于第三方库隔离的Python沙箱逃逸防御机制[J]. 信息网络安全, 2024, 24(5): 682-693. |
[4] | 沈卓炜, 汪仁博, 孙贤军. 基于Merkle树和哈希链的层次化轻量认证方案[J]. 信息网络安全, 2024, 24(5): 709-718. |
[5] | 田钊, 牛亚杰, 佘维, 刘炜. 面向车联网的车辆节点信誉评估方法[J]. 信息网络安全, 2024, 24(5): 719-731. |
[6] | 石润华, 邓佳鹏, 于辉, 柯唯阳. 基于量子行走公钥加密的电子投票方案[J]. 信息网络安全, 2024, 24(5): 732-744. |
[7] | 郭建胜, 关飞婷, 李志慧. 一种带作弊识别的动态(t,n)门限量子秘密共享方案[J]. 信息网络安全, 2024, 24(5): 745-755. |
[8] | 李雨昕, 黄文超, 王炯涵, 熊焰. 基于Tamarin的门罗币支付协议分析方法[J]. 信息网络安全, 2024, 24(5): 756-766. |
[9] | 张书雅, 陈良国, 陈兴蜀. 一种启发式日志模板自动发现方法[J]. 信息网络安全, 2024, 24(5): 767-777. |
[10] | 张长琳, 仝鑫, 佟晖, 杨莹. 面向网络安全领域的大语言模型技术综述[J]. 信息网络安全, 2024, 24(5): 778-793. |
[11] | 王巍, 胡永涛, 刘清涛, 王凯崙. 铁路运行环境下ERT可信根实体的软件化技术研究[J]. 信息网络安全, 2024, 24(5): 794-801. |
[12] | 郭梓萌, 朱广劼, 杨轶杰, 司群. 基于APT特征的铁路网络安全性能研究[J]. 信息网络安全, 2024, 24(5): 802-811. |
[13] | 张浩, 谢大智, 胡云晟, 叶骏威. 基于半监督学习的网络异常检测研究综述[J]. 信息网络安全, 2024, 24(4): 491-508. |
[14] | 王健, 陈琳, 王凯崙, 刘吉强. 基于时空图神经网络的应用层DDoS攻击检测方法[J]. 信息网络安全, 2024, 24(4): 509-519. |
[15] | 屠晓涵, 张传浩, 刘孟然. 恶意流量检测模型设计与实现[J]. 信息网络安全, 2024, 24(4): 520-533. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||