信息网络安全 ›› 2023, Vol. 23 ›› Issue (10): 48-57.doi: 10.3969/j.issn.1671-1122.2023.10.007

• 入选论文 • 上一篇    下一篇

一种基于静态分析的多视图硬件木马检测方法

陈星任(), 熊焰, 黄文超, 付贵禄   

  1. 中国科学技术大学计算机科学与技术学院,合肥 230026
  • 收稿日期:2023-06-14 出版日期:2023-10-10 发布日期:2023-10-11
  • 通讯作者: 陈星任 E-mail:chenxingren@mail.ustc.edu.cn
  • 作者简介:陈星任(1999—),男,江苏,硕士研究生,主要研究方向为硬件安全、漏洞挖掘和静态分析|熊焰(1960—),男,安徽,教授,博士,CCF会员,主要研究方向为网络安全、漏洞挖掘和形式化建模|黄文超(1982—),男,湖北,副教授,博士,CCF会员,主要研究方向为网络安全、漏洞挖掘和形式化建模|付贵禄(1995—),男,甘肃,博士研究生,主要研究方向为硬件安全、漏洞挖掘和形式化分析
  • 基金资助:
    国家自然科学基金(61972369);国家自然科学基金(62102385);国家自然科学基金(62272434);国家自然科学基金(62372422);国家重点研发计划(2021QY2104);安徽省自然科学基金(2108085QF262)

A Multi-View Hardware Trojan Detection Method Based on Static Analysis

CHEN Xingren(), XIONG Yan, HUANG Wenchao, FU Guilu   

  1. School of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, China
  • Received:2023-06-14 Online:2023-10-10 Published:2023-10-11

摘要:

随着集成电路产业的全球化,大部分设计、制造和测试过程已经转移到了世界各地不受信任的第三方实体,这样可能存在攻击者在硬件设计中插入有恶意行为电路的风险,即硬件木马。在早期发现硬件木马至关重要,若在设计后期或制造后再想移除它将开销很大。文章提出一种基于静态分析的多视图硬件木马检测方法,首先通过分析Verilog代码得出变量数据依赖图和变量控制依赖图,从多个视角深度挖掘硬件设计的语义信息;然后通过多视图表示目标硬件设计不同视角下的行为表示向量;最后利用多视图融合方法进行协同融合,将得出的表示向量送入分类器中,从而检测Verilog代码是否被插入了硬件木马。实验结果表明,文章所提的检测方法在不依赖设计规范和不局限于模式库的情况下,实现了对硬件木马精确且全面的检测以及对Verilog代码的全自动分析。

关键词: 硬件木马检测, 多视图融合, 图表示学习, 静态分析

Abstract:

With the globalization of the integrated circuit industry, a significant portion of the design, manufacturing, and testing processes has been shifted to untrusted third-party entities around the world. This has led to the potential risk of malicious circuit insertion in hardware designs by attackers, known as hardware trojans. Early detection of hardware trojans is crucial because removing them after the design or manufacturing stages can be extremely costly. Therefore, this paper presented a static analysis-based multi-view hardware trojan detection method. By analyzing Verilog code, variable data dependency graphs and variable control dependency graphs were generated to extract semantic information from multiple perspectives in hardware design. Then, this method employed multi-view representation learning to derive behavioral representation vectors for the target hardware design from different viewpoints. Finally, a multi-view fusion approach was applied to collaboratively integrate the obtained representation vectors and feed them into a classifier to detect the presence of hardware trojans in Verilog code. Experimental validation demonstrated that the presented detection method achieves accurate and comprehensive hardware trojan detection without relying on design specifications and without being limited to pattern libraries, enabling fully automated analysis of Verilog code.

Key words: hardware trojan detection, multi-view fusion, graph representation learning, static analysis

中图分类号: