信息网络安全 ›› 2023, Vol. 23 ›› Issue (10): 48-57.doi: 10.3969/j.issn.1671-1122.2023.10.007
收稿日期:
2023-06-14
出版日期:
2023-10-10
发布日期:
2023-10-11
通讯作者:
陈星任
E-mail:chenxingren@mail.ustc.edu.cn
作者简介:
陈星任(1999—),男,江苏,硕士研究生,主要研究方向为硬件安全、漏洞挖掘和静态分析|熊焰(1960—),男,安徽,教授,博士,CCF会员,主要研究方向为网络安全、漏洞挖掘和形式化建模|黄文超(1982—),男,湖北,副教授,博士,CCF会员,主要研究方向为网络安全、漏洞挖掘和形式化建模|付贵禄(1995—),男,甘肃,博士研究生,主要研究方向为硬件安全、漏洞挖掘和形式化分析
基金资助:
CHEN Xingren(), XIONG Yan, HUANG Wenchao, FU Guilu
Received:
2023-06-14
Online:
2023-10-10
Published:
2023-10-11
摘要:
随着集成电路产业的全球化,大部分设计、制造和测试过程已经转移到了世界各地不受信任的第三方实体,这样可能存在攻击者在硬件设计中插入有恶意行为电路的风险,即硬件木马。在早期发现硬件木马至关重要,若在设计后期或制造后再想移除它将开销很大。文章提出一种基于静态分析的多视图硬件木马检测方法,首先通过分析Verilog代码得出变量数据依赖图和变量控制依赖图,从多个视角深度挖掘硬件设计的语义信息;然后通过多视图表示目标硬件设计不同视角下的行为表示向量;最后利用多视图融合方法进行协同融合,将得出的表示向量送入分类器中,从而检测Verilog代码是否被插入了硬件木马。实验结果表明,文章所提的检测方法在不依赖设计规范和不局限于模式库的情况下,实现了对硬件木马精确且全面的检测以及对Verilog代码的全自动分析。
中图分类号:
陈星任, 熊焰, 黄文超, 付贵禄. 一种基于静态分析的多视图硬件木马检测方法[J]. 信息网络安全, 2023, 23(10): 48-57.
CHEN Xingren, XIONG Yan, HUANG Wenchao, FU Guilu. A Multi-View Hardware Trojan Detection Method Based on Static Analysis[J]. Netinfo Security, 2023, 23(10): 48-57.
表1
变量特征及其说明
特征名称 | 提取方法 |
---|---|
Add | 统计变量相关的加法的次数 |
Minus | 统计变量相关的减法的次数 |
Multip | 统计变量相关的乘法的次数 |
Divide | 统计变量相关的除法的次数 |
Mod | 统计变量相关的取模的次数 |
Not | 统计变量相关的取反的次数 |
Or | 统计变量相关的或运算的次数 |
And | 统计变量相关的与运算的次数 |
Xor | 统计变量相关的异或运算的次数 |
Shift | 统计变量相关的移位操作的次数 |
Cat | 统计变量相关的拼接操作的次数 |
Ifn | 统计变量所属if 分支的次数 |
Can | 统计变量所属case分支的次数 |
Loopn | 统计变量所属循环结构的次数 |
Sensitivity | 变量敏感性 |
[1] |
HU Wei, HONG C C, ANIRBAN S, et al. An Overview of Hardware Security and Trust: Threats, Countermeasures, and Design Tools[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 40(6): 1010-1038.
doi: 10.1109/TCAD.2020.3047976 URL |
[2] | TAMZIDUL H, JONATHAN C, PRABUDDHA C, et al. Hardware IP Trust Validation:Learn (the Untrustworthy), and Verify[C]// IEEE. IEEE International Test Conference. New York: IEEE, 2018: 1-10. |
[3] | LU Sian. Research on Test Architectures of Reusable IP Core and SoC (System on a Chip)[D]. Zhejiang: Zhejiang University, 2003. |
陆思安. 可复用 IP 核以及系统芯片 SoC 的测试结构研究[D]. 浙江大学, 2003. | |
[4] |
SONIA A, KASEM K, MAGDY A B. A Survey on Hardware Security: Current Trends and Challenges[J]. IEEE Access, 2023, 11: 77543-77565.
doi: 10.1109/ACCESS.2023.3288696 URL |
[5] | JOHANN K, KAVUN E B, FRANCESCO R, et al. Towards Secure Composition of Integrated Circuits and Electronic Systems: On the Role of EDA[C]// EDAA. 2020 Design, Automation & Test in Europe Conference & Exhibition. New York: IEEE, 2020: 508-513. |
[6] |
XUE Mingfu, GU Chongyan, LIU Weiqiang, et al. Ten Years of Hardware Trojans: A Survey from the Attacker’s Perspective[J]. IET Computers & Digital Techniques, 2020, 14(6): 231-246.
doi: 10.1049/cdt2.v14.6 URL |
[7] | SKOROBOGATOV S, WOODS C. Breakthrough Silicon Scanning Discovers Backdoor in Military Chip[C]// IACR. Cryptographic Hardware and Embedded Systems(CHES 2012)-14th International Workshop. Berlin:Springer, 2012: 23-40. |
[8] |
NICOLE F, ISMAIL S, CETIN K K, et al. Hiding Hardware Trojan Communication Channels in Partially Specified SoC Bus Functionality[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, 36(9): 1435-1444.
doi: 10.1109/TCAD.2016.2638439 URL |
[9] | HUANG Zhao, WANG Quan, YANG Pengfei. Hardware Trojan: Research Progress and New Trends on Key Problems[J]. Chinese Journal of Computers, 2019, 42(5): 993-1017. |
黄钊, 王泉, 杨鹏飞. 硬件木马:关键问题研究进展及新动向[J]. 计算机学报, 2019, 42(5): 993-1017. | |
[10] | CHAKRABORTY R S, WOLFF F, PAUL S, et al. MERO: A Statistical Approach for Hardware Trojan Detection[C]// IACR. Cryptographic Hardware and Embedded Systems (CHES 2009). Berlin:Springer, 2009: 396-410. |
[11] | SAHA S, CHAKRABORTY R S, NUTHAKKI S S, et al. Improved Test Pattern Generation for Hardware Trojan Detection Using Genetic Algorithm and Boolean Satisfiability[C]// IACR. Cryptographic Hardware and Embedded Systems (CHES 2015)-17th International Workshop. Berlin:Springer, 2015: 577-596. |
[12] | LYU Y, MISHRA P. Automated Trigger Activation by Repeated Maximal Clique Sampling[C]// IEEE. 25th Asia and South Pacific Design Automation Conference. New York: IEEE, 2020: 482-487. |
[13] | SUBRAMANYAN P, ARORA D. Formal Verification of Taint-Propagation Security Properties in a Commercial SoC Design[C]// IEEE. Design Automation & Test in Europe Conference & Exhibition (DATE 2014). New York: IEEE, 2014: 1-2. |
[14] | RAJENDRAN J, VEDULA V, KARRI R. Detecting Malicious Modifications of Data in Third-Party Intellectual Property Cores[C]// ACM. Proceedings of the 52nd Annual Design Automation Conference. New York: ACM, 2015: 1-112. |
[15] | RAJENDRAN J, DHANDAYUTHAPANY A M, VEDULA V, et al. Formal Security Verification of Third Party Intellectual Property Cores for Information Leakage[C]// IEEE. 29th International Conference on VLSI Design and 15th International Conference on Embedded Systems. New York: IEEE, 2016: 547-522. |
[16] | GUO Xiaolong, DUTTA R G, MISHRA P, et al. Scalable SoC Trust Verification Using Integrated Theorem Proving and Model Checking[C]// IEEE. 2016 IEEE International Symposium on Hardware Oriented Security and Trust. New York: IEEE, 2016: 124-129. |
[17] | NAHIYAN A, SADI M, VITTAl R, et al. Hardware Trojan Detection Through Information Flow Security Verification[C]// IEEE. IEEE International Test Conference (ITC 2017). New York: IEEE, 2017: 1-10. |
[18] | NAHIYAN A, XIAO Kan, YANG Kun, et al. AVFSM: A Framework for Identifying and Mitigating Vulnerabilities in FSMs[C]// DAC EC. Proceedings of the 53rd Annual Design Automation Conference. New York: ACM, 2016: 1-89. |
[19] | WAKSMAN A, SUOZZO M, SETHUMADHAVAN S. FANCI: Identification of Stealthy Malicious Logic Using Boolean Functional Analysis[C]// ACM. 2013 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2013: 697-708. |
[20] | ZHANG Jie, YUAN Feng, WEI Lingxiao, et al. VeriTrust: Verification for Hardware Trust[C]// ACM. The 50th Annual Design Automation Conference 2013. New York: ACM, 2013: 1-61. |
[21] | ZHANG Jie, YUANFeng, XUQiang. Detrust: Defeating Hardware Trust Verifi- Cation with Stealthy Implicitly-Triggered Hardware Trojans[C]// ACM. Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2014: 153-166. |
[22] | PICCOLBONI L, MENON A, PRAVADELLI G. Efficient Control-Flow Subgraph Matching for Detecting Hardware Trojans in RTL Models[J]. ACM Transactions on Embedded Computing Systems, 2017, 16 (5S): 1-19. |
[23] | DEMROZI F, ZUCCHELLI R, PRAVADELLI G. Exploiting Sub-graph Isomorphism and Probabilistic Neural Networks for the Detection of Hardware Trojans at RTL[C]// IEEE. 2017 IEEE International High Level Design Validation and Test Workshop. New York: IEEE, 2017: 67-73. |
[24] | HAN Tao, WANGYuze, LIUPeng. Hardware Trojans Detection at Register Transfer Level Based on Machine Learning[C]// IEEE. IEEE International Symposium on Circuits and Systems (ISCAS 2019). New York: IEEE, 2019: 1-5. |
[25] | HASEGAWA K, YANAGISAWA M, TOGAWA N. Hardware Trojans Classification for Gate-Level Netlists Using Multi-Layer Neural Networks[C]// IEEE. 23rd IEEE International Symposium on on-Line Testing and Robust System Design. New York: IEEE, 2017: 227-232. |
[26] | FARHATH Z, ROBERT K. Detecting RTL Trojans Using Artificial Immune Systems and High Level Behavior Classification[C]// AHSC. Asian Hardware Oriented Security and Trust Symposium (AsianHOST 2018). New York: ACM, 2018: 68-73. |
[27] | YASAEI R, YU S Y, FARUQUE M A A. GNN4TJ: Graph Neural Networks for Hardware Trojan Detection at Register Transfer Level[C]// ECSI. Design Automation & Test in Europe Conference & Exhibition (DATE 2021). New York: IEEE, 2021: 1504-1509. |
[28] |
SHAKYA B, HE T, SALMANI H, et al. Benchmarking of Hardware Trojans and Maliciously Affected Circuits[J]. Journal of Hardware and Systems Security, 2017, 1(1): 85-102.
doi: 10.1007/s41635-017-0001-6 |
[1] | 秦中元, 胡宁, 方兰婷. 基于免疫仿生机理和图神经网络的网络异常检测方法[J]. 信息网络安全, 2021, 21(8): 10-16. |
[2] | 杨铭, 张健. 基于图像识别的恶意软件静态检测模型[J]. 信息网络安全, 2021, 21(10): 25-32. |
[3] | 李明磊, 黄晖, 陆余良. 面向漏洞挖掘的基于符号分治区的测试用例生成技术[J]. 信息网络安全, 2020, 20(5): 39-46. |
[4] | 胡建伟, 赵伟, 闫峥, 章芮. 基于机器学习的SQL注入漏洞挖掘技术的分析与实现[J]. 信息网络安全, 2019, 19(11): 36-42. |
[5] | 陈虎, 周瑶, 赵军锁. 针对特定文件结构和关键指令的符号执行优化方法[J]. 信息网络安全, 2018, 18(9): 86-94. |
[6] | 李汶洋. Android操作系统恶意软件检测技术研究[J]. 信息网络安全, 2015, 15(9): 62-65. |
[7] | 张帆, 钟章队. 基于权限分析的手机恶意软件检测与防范[J]. 信息网络安全, 2015, 15(10): 66-73. |
[8] | 陈震;许建林;余奕凡;刘洪健. 移动网络软件架构中的安全技术研究[J]. , 2013, 13(12): 0-0. |
[9] | 舒心;王永伦;张鑫. 手机病毒分析与防范[J]. , 2012, 12(8): 0-0. |
[10] | 李向东;刘晓;夏冰;郑秋生. 恶意代码检测技术及其在等级保护工作中的应用[J]. , 2012, 12(8): 0-0. |
[11] | 王一岚;郭嵩. 基于静态分析的Java源代码后门检测技术研究[J]. , 2012, 12(7): 0-0. |
[12] | 贾菲;刘威. 基于Android平台恶意代码逆向分析技术的研究[J]. , 2012, 12(4): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||