信息网络安全 ›› 2022, Vol. 22 ›› Issue (2): 64-75.doi: 10.3969/j.issn.1671-1122.2022.02.008

• 技术研究 • 上一篇    下一篇

基于普遍对抗噪声的高效载体图像增强算法

夏强, 何沛松(), 罗杰, 刘嘉勇   

  1. 四川大学网络空间安全学院,成都 610207
  • 收稿日期:2021-12-01 出版日期:2022-02-10 发布日期:2022-02-16
  • 通讯作者: 何沛松 E-mail:gokeyhps@scu.edu.cn
  • 作者简介:夏强(1996—),男,四川,硕士研究生,主要研究方向为信息隐藏、图像隐写术、深度学习、对抗样本|何沛松(1991—),男,四川,助理研究员,博士,主要研究方向为多媒体安全、人工智能|罗杰(1993—),女,四川,博士研究生,主要研究方向为信息隐藏、深度学习|刘嘉勇(1962—),男,四川,教授,博士,主要研究方向为信息安全理论与应用、网络通信与网络安全
  • 基金资助:
    国家自然科学基金青年基金(61902263);中国博士后科学基金面上资助(2020M673276)

An Efficient Enhancement Algorithm of Cover Image Based on Universal Adversarial Noise

XIA Qiang, HE Peisong(), LUO Jie, LIU Jiayong   

  1. 1. School of Cyber Science and Engineer, Sichuan University, Chengdu 610225, China
  • Received:2021-12-01 Online:2022-02-10 Published:2022-02-16
  • Contact: HE Peisong E-mail:gokeyhps@scu.edu.cn

摘要:

在图像隐写领域,利用对抗样本技术实现载体图像增强是提升隐写安全性的重要手段。然而,现有基于对抗样本的载体图像增强算法需要对每张载体图像生成特定的对抗噪声,这导致算法时间效率低、实用性较差,并且增强后的载体图像对抗不同隐写分析器的迁移能力较弱。针对上述问题,文章提出一种基于普遍对抗噪声的高效载体图像增强算法,将对抗样本算法DeepFool作为基础,以对隐写分析器的攻击成功率为标准循环迭代构建普遍对抗噪声,将其与载体图像进行叠加完成载体图像增强,实现构建单个普遍对抗噪声便能对不同的载体图像进行增强。为进一步提高载体图像增强后抵抗不同隐写分析器的迁移能力,文章提出将针对不同隐写分析器的普遍对抗噪声进行融合得到复合普遍对抗噪声,实现对不同隐写分析器均具有良好隐写安全性的目的。实验结果表明,文章算法在载体图像增强的时间效率上相较于目前最先进的算法得到了极大程度提升,具有更强的实用性。此外,利用复合普遍对抗噪声进行载体图像增强能够显著提高不同隐写分析器的安全性。

关键词: 信息隐藏, 数字图像隐写术, 载体图像增强, 对抗样本

Abstract:

In the field of steganography, applying adversarial example technology to enhance cover image is an important method to improve the security of steganography. However, current enhancement methods of cover image based on adversarial example need to generate specific adversarial noise for each cover image independently, which leads to low efficiency and poor practicability. Furthermore, enhanced cover images have poor transfer ability against different steganalyzers. In order to solve the above-mentioned problems, this paper proposed an efficient enhancement algorithm of cover image based on universal adversarial noise. The proposed algorithm applied the adversarial example generation method DeepFool as the basic technique to construct a universal adversarial noise, which used a cyclic iterative strategy and assigned the success rate of attack on the steganalyzer as the target of optimization. Then the enhancement of cover image was achieved by adding universal adversarial noise to the cover image. For the proposed method, a single universal adversarial noise can enhance different cover images, which improves the time efficiency of cover enhancement significantly. Besides, to further improve the transfer ability of enhanced cover image, this paper fused the universal adversarial noise of different steganalyzers to obtain a fused universal adversarial noise. The use of fused universal adversarial noise can improve the security of the enhanced cover image to different steganalyzers. The experimental results show that the proposed method can achieve a significant improvement of time efficiency with other state-of-the-art algorithms. Futhermore, the cover image enhanced by the fused universal adversarial noise has much better security to different steganalyzers after embedding secret information.

Key words: information hiding, image steganography, enhancing cover image, adversarial example

中图分类号: