信息网络安全 ›› 2022, Vol. 22 ›› Issue (2): 1-10.doi: 10.3969/j.issn.1671-1122.2022.02.001

• 等级保护 • 上一篇    下一篇

基于LSTM-Attention的内部威胁检测模型

张光华1,2, 闫风如2, 张冬雯2(), 刘雪峰1   

  1. 1.西安电子科技大学网络与信息安全学院,西安 710071
    2.河北科技大学信息科学与工程学院,石家庄 050018
  • 收稿日期:2021-08-04 出版日期:2022-02-10 发布日期:2022-02-16
  • 通讯作者: 张冬雯 E-mail:zdwwtx@163.com
  • 作者简介:张光华(1979—),男,河北,教授,博士,主要研究方向为网络与信息安全|闫风如(1997—),女,河北,硕士研究生,主要研究方向为网络与信息安全|张冬雯(1964—),女,河北,教授,博士,主要研究方向为网络与信息安全|刘雪峰(1985—),男,安徽,副教授,博士,主要研究方向为隐私保护
  • 基金资助:
    国家自然科学基金(62072239);国家重点研发计划(2018YFB0804701);河北省科技厅科技计划(20377725D)

Insider Threat Detection Model Based on LSTM-Attention

ZHANG Guanghua1,2, YAN Fengru2, ZHANG Dongwen2(), LIU Xuefeng1   

  1. 1. School of Cyber Engineering, Xidian University, Xi’an 710071, China
    2. School of Information Science and Engineering, Hebei University of Science Technology, Shijiazhuang 050018, China
  • Received:2021-08-04 Online:2022-02-10 Published:2022-02-16
  • Contact: ZHANG Dongwen E-mail:zdwwtx@163.com

摘要:

信息被内部人员非法泄露、复制、篡改,会给政府、企业造成巨大的经济损失。为了防止信息被内部人员非法窃取,文章提出一种基于LSTM-Attention的内部威胁检测模型ITDBLA。首先,提取用户的行为序列、用户行为特征、角色行为特征和心理数据描述用户的日常活动;其次,使用长短期记忆网络和注意力机制学习用户的行为模式,并计算真实行为与预测行为之间的偏差;最后,使用多层感知机根据该偏差进行综合决策,从而识别异常行为。在CERT内部威胁数据集上进行实验,实验结果表明,ITDBLA模型的AUC分数达0.964,具有较强的学习用户活动模式和检测异常行为的能力。

关键词: 长短期记忆, 注意力机制, 用户和实体行为分析, 内部威胁检测

Abstract:

Information materials are illegally leaked, copied and tampered by insider personnel, which often cause huge financial losses to governments and enterprises. In order to prevent information from being illegally stolen by insiders, an insider threat detection model ITDBLA based on LSTM-Attention was proposed. Firstly, the user’s behavior sequence, user behavior characteristics, role behavior characteristics and psychological data were extracted to describe the daily activities of users. Secondly, the long short-term memory (LSTM) network and the attention mechanism were used to learn the user’s behavior pattern, and calculate the deviation between the real behavior and the predicted behavior. Finally, multilayer perceptron was used to make comprehensive decisions based on these deviations to identify abnormal behaviors. Experimental results on the CERT insider threat dataset show that the proposed ITDBLA model achieves an AUC score of 0.964, which show a stronger ability to learn user activity patterns and detect abnormal behaviors.

Key words: LSTM, attention mechanism, user and entity behavior analysis, insider threat detection

中图分类号: