信息网络安全 ›› 2024, Vol. 24 ›› Issue (3): 427-437.doi: 10.3969/j.issn.1671-1122.2024.03.008
收稿日期:
2023-09-17
出版日期:
2024-03-10
发布日期:
2024-04-03
通讯作者:
江魁
E-mail:jiangkui@szu.edu.cn
作者简介:
江魁(1975—),男,安徽,高级工程师,硕士,CCF会员,主要研究方向为网络安全与网络管理|卢橹帆(1997—),男,广东,硕士研究生,主要研究方向为网络安全|苏耀阳(1998—),男,广东,硕士研究生,主要研究方向为网络安全|聂伟(1973—),男,河南,讲师,博士,主要研究方向为计算机网络体系结构、软件定义网络和可编程芯片
基金资助:
JIANG Kui1(), LU Lufan2, SU Yaoyang2, NIE Wei2
Received:
2023-09-17
Online:
2024-03-10
Published:
2024-04-03
Contact:
JIANG Kui
E-mail:jiangkui@szu.edu.cn
摘要:
针对SHDoS发起变频攻击导致阈值检测方案失效的问题,文章提出一种基于Attention-GRU的深度学习模型。该模型首先利用改进的Borderline-SMOTE进行数据平衡处理,然后引入自注意力机制构建双层GRU分类网络,对预处理后的数据进行学习训练,最后对SHDoS攻击流量进行检测。在CICIDS2018数据集和SHDoS自制数据集上进行验证,实验结果表明,文章所提模型的精确率分别为98.73%和97.64%,召回率分别为96.57%和96.27%,相较于未采用自注意力机制的模型,在精确率和召回率上有显著提升,相较于以往采用SMOTE或Borderline-SMOTE进行数据预处理的模型,文章所提模型的性能也是最佳的。
中图分类号:
江魁, 卢橹帆, 苏耀阳, 聂伟. 基于Attention-GRU的SHDoS攻击检测研究[J]. 信息网络安全, 2024, 24(3): 427-437.
JIANG Kui, LU Lufan, SU Yaoyang, NIE Wei. SHDoS Attack Detection Research Based on Attention-GRU[J]. Netinfo Security, 2024, 24(3): 427-437.
表5
不同模型在CICIDS2018和自制SHDoS数据集上的对比
模型 | 精确率 (CICIDS 2018) | 召回率 (CICIDS 2018) | 精确率 (自制 数据集) | 召回率 (自制 数据集) |
---|---|---|---|---|
SMOTE+MLP | 92.56% | 98.50% | 91.45% | 93.21% |
SMOTE+RNN | 95.15% | 94.41% | 94.23% | 95.25% |
SMOTE+LSTM | 95.12% | 94.87% | 92.31% | 94.32% |
SMOTE+GRU | 96.23% | 96.80% | 94.33% | 96.45% |
Borderline- SMOTE+MLP | 95.30% | 90.45% | 95.32% | 91.45% |
Borderline- SMOTE+RNN | 94.89% | 90.69% | 96.24% | 92.20% |
Borderline- SMOTE+LSTM | 95.78% | 87.39% | 95.27% | 90.24% |
Borderline- SMOTE+GRU | 97.00% | 92.24% | 96.39% | 93.25% |
改进Borderline-SMOTE+GRU | 97.95% | 95.05% | 96.23% | 93.45% |
本文模型 | 98.73% | 96.57% | 97.64% | 96.27% |
[1] | ZARGAR S T, JOSHI J, TIPPER D. A Survey of Defense Mechanisms Against Distributed Denial of Service (DDoS) Flooding Attacks[J]. IEEE Communications Surveys & Tutorials, 2013, 15(4): 2046-2069. |
[2] | WU Hanqing. White Hats Talk about Web Security[M]. Beijing: Electronic Industry Press, 2013. |
吴翰清. 白帽子讲Web安全[M]. 北京: 电子工业出版社, 2013. | |
[3] | WONG O C, TOM B. Layer DDoSLayer 7 DDoS Attacks. OWASP AppSec DC 2010. (2010-11-11)[2023-08-03]. https://owasp.org/www-pdf-archive/Layer_7_DDOS.pdf |
[4] | ARI I, HONG Bo, MILLER E L, et al. Managing Flash Crowds on the Internet[C]// IEEE. 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems. New York: IEEE, 2003: 246-249. |
[5] | LUO Wenhua, CHENG Jiaxing. Hybrid DDoS Attack Distributed Detection System Based on Hadoop Architecture[J]. Netinfo Security, 2021, 21(2): 61-69. |
罗文华, 程家兴. 基于Hadoop架构的混合型DDoS攻击分布式检测系统[J]. 信息网络安全, 2021, 21(2): 61-69. | |
[6] | PRIYA S S, SIVARAM M, YUVARAJ D, et al. Machine Learning Based DDoS Detection[C]// IEEE. 2020 International Conference on Emerging Smart Computing and Informatics (ESCI). New York: IEEE, 2020: 234-237. |
[7] | HIRAKAWA T, OGURA K, BISTA B B, et al. A Defense Method Against Distributed Slow HTTP DoS Attack[C]// IEEE. 2016 19th International Conference on Network-Based Information Systems (NBiS). New York: IEEE, 2016: 152-158. |
[8] | MURALEEDHARAN N, JANET B. Behaviour Analysis of HTTP Based Slow Denial of Service Attack[C]// IEEE. 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). New York: IEEE, 2017: 1851-1856. |
[9] | CHEN Yi, ZHANG Meijing, XU Fajian. HTTP Slow DoS Attack Detection Method Based on One-Dimensional Convolutional Neural Network[J]. Computer Applications, 2020, 40(10): 2973-2979. |
陈旖, 张美璟, 许发见. 基于一维卷积神经网络的HTTP慢速DoS攻击检测方法[J]. 计算机应用, 2020, 40(10): 2973-2979.
doi: 10.11772/j.issn.1001-9081.2020020172 |
|
[10] | SHANG Fubo. Research on Intrusion Detection Technology Based on Deep Learning[D]. Shenyang: Shenyang Jianzhu University, 2021. |
商富博. 基于深度学习的入侵检测技术研究[D]. 沈阳: 沈阳建筑大学, 2021. | |
[11] | SHLENS J. A Tutorial on Principal Component Analysis[EB/OL]. (2014-04-03)[2023-08-03]. http://arxiv.org/pdf/1404.1100.pdf. |
[12] | SHI Hongbo, CHEN Yuwen, CHEN Xin. Review of SMOTE Oversampling and Its Improved Algorithms[J]. Journal of Intelligent Systems, 2019, 14(6): 1073-1083. |
石洪波, 陈雨文, 陈鑫. SMOTE过采样及其改进算法研究综述[J]. 智能系统学报, 2019, 14(6): 1073-1083. | |
[13] | CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic Minority Over-Sampling Technique[J]. Journal of Artificial Intelligence Research, 2002(16): 321-357. |
[14] | HAN Hui, WANGWenyuan, MAOBinghuan. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning[C]// Springer. International Conference on Intelligent Computing. Heidelberg: Springer, 2005: 878-887. |
[15] | JIA Jing, WANG Qingsheng, CHEN Yongle, et al. DDoS Attack Detection Method Based on Attention Mechanism[J]. Computer Engineering and Design, 2021, 42(9): 2439-2445. |
贾婧, 王庆生, 陈永乐, 等. 基于注意力机制的DDoS攻击检测方法[J]. 计算机工程与设计, 2021, 42(9): 2439-2445. | |
[16] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All You Need[J]. Neural Information Processing Systems, 2017(30): 6000-6010. |
[17] | YAN Liang, JI Shaopei, LIU Dong, et al. Network Intrusion Detection Based on GRU and Feature Embedding[J]. Journal of Applied Science, 2021, 39(4): 559-568. |
颜亮, 姬少培, 刘栋, 等. 基于GRU与特征嵌入的网络入侵检测[J]. 应用科学学报, 2021, 39(4): 559-568. | |
[18] | CHO K, VAN M B, GULCEHRE C, et al. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation[EB/OL]. (2014-06-03)[2023-08-03]. https://arxiv.org/abs/1406.1078. |
[19] | SHARAFALDIN I, LASHKARI A H, GHORBANI A A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization[EB/OL]. (2018-01-01)[2023-08-03]. https://www.researchgate.net/publication/322870768_Toward_Generating_a_New_Intrusion_Detection_Dataset_and_Intrusion_Traffic_Characterization. |
[1] | 杨志鹏, 刘代东, 袁军翼, 魏松杰. 基于自注意力机制的网络局域安全态势融合方法研究[J]. 信息网络安全, 2024, 24(3): 398-410. |
[2] | 李季瑀, 付章杰, 张玉斌. 一种基于跨域对抗适应的图像信息隐藏算法[J]. 信息网络安全, 2023, 23(1): 93-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||