姚洪磊%张彦
YAO Hong-lei%ZHANG Yan
摘要: 互联网售票逐步取代了传统售票方式,在铁路运输生产中发挥至关重要的作用,但由于其向互联网提供服务,面临多个层面的安全风险和威胁,受外部攻击、病毒感染等安全威胁日益增大,一旦遭受攻击或其他因素导致系统宕机或终止服务,产生社会负面影响巨大。针对上述威胁,需要安全维护人员运用科学的方法和手段,系统地分析系统所面临的威胁及其存在的脆弱性,评估安全事件一旦发生可能造成的危害程度,提出有针对性的抵御威胁的防护对策和整改措施,将风险控制在可接受的水平,最大限度地保障信息系统安全。人工神经网络具有常规方法所不具备的智能特性,具有自主获取和学习知识的功能,可以较好地处理不确定性和非线性的问题,目前基于人工神经网络的信息安全风险评估在多个行业中已经开展了研究并得到了应用。相对其他人工神经网络模型,BP 神经网络模型具有较强的非线性映射能力和自学习、自适应能力。首先,采用3层的神经网络能够以任意精度逼近任何非线性连续函数,使其适合于求解内部机制复杂的问题;其次,训练时能够通过学习自动提取输出、输出数据间的“合理规则”,并自适应的将学习内容记忆于网络的权值中。因此,文章根据铁路互联网售票系统复杂网络体系结构,采用具有3层结构的 BP 反向传播人工神经网络模型与之对应,准确反映互联网售票系统面临的各类安全威胁,并利用 BP 神经网络良好的自适应性和容错能力,以互联网售票系统面临的安全风险威胁等级值为训练样本,采用已训练的 BP 网络对互联网售票系统进行安全风险评估,设计了基于 BP 神经网络的风险评估模型,仿真结果表明,设计的模型具有很好的自适应性和容错能力,适用于复杂的互联网售票系统网络,实验数据与实际系统风险评估值基本吻合。