信息网络安全 ›› 2025, Vol. 25 ›› Issue (12): 1863-1877.doi: 10.3969/j.issn.1671-1122.2025.12.003

• 理论研究 • 上一篇    下一篇

主被动协同的路由器别名高效识别方法

胡丹1,2(), 杨冀龙3   

  1. 1.中国海洋大学信息科学与工程学部,青岛 266160
    2.中国科学院信息工程研究所,北京 100093
    3.北京知道创宇信息技术股份有限公司,北京 100020
  • 收稿日期:2025-10-10 出版日期:2025-12-10 发布日期:2026-01-06
  • 通讯作者: 胡丹 E-mail:hudan@stu.ouc.edu.cn
  • 作者简介:胡丹(1990—),女,四川,博士研究生,主要研究方向为网络空间测绘|杨冀龙(1979—),男,四川,硕士,主要研究方向为网络空间测绘、云防御、网络攻防
  • 基金资助:
    国家重点研发计划(2023YFB2705000)

An Efficient Method for Router Alias Identification with Active-Passive Collaboration

HU Dan1,2(), YANG Jilong3   

  1. 1. College of Information Science and Engineering, Ocean University of China, Qingdao 266160, China
    2. Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
    3. Beijing Zhidao Chuangyu Information Technology Co., Ltd., Beijing 100020, China
  • Received:2025-10-10 Online:2025-12-10 Published:2026-01-06
  • Contact: HU Dan E-mail:hudan@stu.ouc.edu.cn

摘要:

路由器别名识别是准确分析网络拓扑结构的关键技术之一,针对大规模网络中路由器别名识别效率低、抗干扰能力弱的问题,文章提出一种主被动协同的高效路由器别名识别方法。首先,构建融合4类主动探测协议(ICMP/TCP/UDP/SYN)与BGP/SNMP被动监测的协同框架,通过四叉树索引优化地理调度,降低跨区域探测延迟;然后,设计动态任务分配模型,采用负载方差阈值控制实现计算复杂度从O(n2)到O(n)的优化;进而,提出IPBH抗干扰算法,通过滑动窗口机制与动态阈值调整抑制噪声干扰。基于常用的CAIDA2023数据集开展实验,实验结果表明,文章提出的方法相比原有典型路由器别名识别方法MBT在识别效率和抗干扰方面具有明显优势,识别每万台路由器的速度由42.3 s降低至4.1 s;通过滑动窗口局部平滑与卡尔曼滤波动态阈值调整,抑制IP标识随机化噪声与等成本多路径干扰,在25%噪声环境下实现了90.1%的别名识别准确率,相比RadarGun、Hybrid Alias、NoiseShield等方法提高了7%~25%。

关键词: 主被动协同探测, 路由器别名识别, IPBH算法, 动态任务分配

Abstract:

Router alias identification is one of the key technologies for accurately analyzing the network topology. Aiming at the problems of low efficiency and weak anti-interference ability of router alias identification in large-scale networks, this paper proposed an efficient router alias identification method with active-passive collaboration. First, a collaborative framework was constructed that integrated four types of active probing protocols (ICMP/TCP/UDP/SYN) and BGP/SNMP passive monitoring. The geographical scheduling was optimized through a quadtree index to reduce the cross-regional probing delay. Then, a dynamic task allocation model was designed. The calculation complexity was optimized from O(n2) to O(n) by using the load variance threshold control. Furthermore, an IPBH anti-interference algorithm was proposed. The noise interference was suppressed through a sliding window mechanism and dynamic threshold adjustment. A large number of experiments were carried out based on the commonly used CAIDA2023 dataset. The results show that the proposed method has obvious advantages in terms of identification efficiency and anti-interference compared with the original MBT typical router alias identification method. The speed of identifying every 10,000 routers was reduced from 42.3 seconds to 4.1 seconds. Through the local smoothing with a sliding window and dynamic threshold adjustment using the Kalman filter, the randomization noise of the IP identification and the interference of equal-cost multi-path are suppressed. An alias identification accuracy rate of 90.1% is achieved in a 25% noise environment, which is 7% to 25% higher than methods such as RadarGun, Hybrid Alias, and NoiseShield, etc.

Key words: active-passive collaborative detection, router alias identification, IPBH algorithm, dynamic task allocation

中图分类号: