信息网络安全 ›› 2022, Vol. 22 ›› Issue (9): 63-75.doi: 10.3969/j.issn.1671-1122.2022.09.008
收稿日期:
2022-06-15
出版日期:
2022-09-10
发布日期:
2022-11-14
通讯作者:
胡禹佳
E-mail:1654606492@qq.com
作者简介:
胡禹佳(1995—),女,重庆,硕士研究生,主要研究方向为分组密码分析|代政一(1996—),男,吉林,博士研究生,主要研究方向为分组密码分析|孙兵(1981—),男,江苏,副教授,博士,主要研究方向为对称密码设计与分析
基金资助:
HU Yujia1(), DAI Zhengyi2, SUN Bing1,3
Received:
2022-06-15
Online:
2022-09-10
Published:
2022-11-14
Contact:
HU Yujia
E-mail:1654606492@qq.com
摘要:
差分分析和线性分析是目前分组密码算法攻击中较常见的两种方法,差分—线性分析是基于这两种方法建立的一种分析方法,近年来受到密码学界的广泛关注。SIMON算法是一种重要的轻量级密码算法,文章主要对SIMON 32/64和SIMON 48进行差分—线性分析,分别构造13轮差分—线性区分器,基于区分器分别进行16轮密钥恢复攻击,数据复杂度分别为226和242,时间复杂度分别为240.59和261.59,增加了SIMON算法的安全性评估维度,丰富了差分—线性分析的实际案例。
中图分类号:
胡禹佳, 代政一, 孙兵. SIMON算法的差分—线性密码分析[J]. 信息网络安全, 2022, 22(9): 63-75.
HU Yujia, DAI Zhengyi, SUN Bing. Differential-Linear Cryptanalysis of the SIMON Algorithm[J]. Netinfo Security, 2022, 22(9): 63-75.
表4
SIMON 32/64算法的5轮线性逼近
轮数/轮 | 掩码(左) | 掩码(右) | 线性偏差 |
---|---|---|---|
0 | 0000 0000 0000 1000 | 0000 0000 0000 0000 | — |
1 | 0000 0000 0000 0000 | 0000 0000 0000 1000 | |
2 | 0000 0000 0000 1000 | 0000 0000 0000 0010 | |
3 | 0000 0000 0000 0010 | 1000 0000 0000 1000 | |
4 | 1000 0000 0000 1000 | 0010 0000 1000 0000 | |
5 | 0010 0000 1000 0000 | 0000 1000 0000 1000 |
表5
SIMON 32/64算法的15轮密钥恢复攻击关系
等式左边 | 等式右边 |
---|---|
& (R_{3}^{15}\odot R_{10}^{15}\oplus R_{9}^{15}\oplus L_{11}^{15}\underrightarrow{\oplus K_{11}^{14}})\odot (R_{10}^{15}\odot R_{1}^{15}\oplus R_{0}^{15}\oplus L_{2}^{15}\underrightarrow{\oplus K_{2}^{14}}) \\ & \oplus (R_{9}^{15}\odot R_{0}^{15}\oplus R_{15}^{15}\oplus L_{1}^{15}\underleftarrow{\oplus K_{1}^{14}})\oplus R_{3}^{15}\underleftarrow{\oplus K_{3}^{13}} \\ \end{align}$ | |
& (R_{11}^{15}\odot R_{2}^{15}\oplus R_{1}^{15}\oplus L_{3}^{15}\underrightarrow{\oplus K_{3}^{14}})\odot (R_{2}^{15}\odot R_{9}^{15}\oplus R_{8}^{15}\oplus L_{10}^{15}\underrightarrow{\oplus K_{10}^{14}}) \\ & \oplus (R_{1}^{15}\odot R_{8}^{15}\oplus R_{7}^{15}\oplus L_{9}^{15}\underleftarrow{\oplus K_{9}^{14}})\oplus R_{11}^{15}\underleftarrow{\oplus K_{11}^{13}} \\ \end{align}$ |
表6
SIMON 32/64算法的16轮密钥恢复攻击关系
等式左边 | 等式右边 |
---|---|
& (R_{7}^{16}\odot R_{14}^{16}\oplus R_{13}^{16}\oplus L_{15}^{16}\underrightarrow{\oplus K_{15}^{15}})\odot (R_{14}^{16}\odot R_{5}^{16}\oplus R_{4}^{16}\oplus L_{6}^{16}\underrightarrow{\oplus K_{6}^{15}}) \\ & \oplus (R_{13}^{16}\odot R_{4}^{16}\oplus R_{3}^{16}\oplus L_{5}^{16}\underleftarrow{\oplus K_{5}^{15}})\oplus R_{7}^{16}\underleftarrow{\oplus K_{7}^{14}} \\ \end{align}$ | |
& (R_{13}^{16}\odot R_{4}^{16}\oplus R_{3}^{16}\oplus L_{5}^{16}\underrightarrow{\oplus K_{5}^{15}})\odot (R_{4}^{16}\odot R_{11}^{16}\oplus R_{10}^{16}\oplus L_{12}^{16}\underrightarrow{\oplus K_{12}^{15}}) \\ & \oplus (R_{3}^{16}\odot R_{10}^{16}\oplus R_{9}^{16}\oplus L_{11}^{16}\underleftarrow{\oplus K_{11}^{15}})\oplus R_{13}^{16}\underleftarrow{\oplus K_{13}^{14}} \\ \end{align}$ | |
& [(R_{11}^{16}\odot R_{2}^{16}\oplus R_{1}^{16}\oplus L_{3}^{16}\underrightarrow{\oplus K_{3}^{15}})\odot (R_{2}^{16}\odot R_{9}^{16}\oplus R_{8}^{16}\oplus L_{10}^{16}\underrightarrow{\oplus K_{10}^{15}}) \\ & \oplus (R_{1}^{16}\odot R_{8}^{16}\oplus R_{7}^{16}\oplus L_{9}^{16}\underrightarrow{\oplus K_{9}^{15}})\oplus R_{11}^{16}\underrightarrow{\oplus K_{11}^{14}}] \\ & \odot [(R_{2}^{16}\odot R_{9}^{16}\oplus R_{8}^{16}\oplus L_{10}^{16}\underrightarrow{\oplus K_{10}^{15}})\odot (R_{9}^{16}\odot R_{0}^{16}\oplus R_{15}^{16}\oplus L_{1}^{16}\underrightarrow{\oplus K_{1}^{15}}) \\ & \oplus (R_{8}^{16}\odot R_{15}^{16}\oplus R_{14}^{16}\oplus L_{0}^{16}\underrightarrow{\oplus K_{0}^{15}})\oplus R_{2}^{16}\underrightarrow{\oplus K_{2}^{14}}] \\ & \oplus [(R_{1}^{16}\odot R_{8}^{16}\oplus R_{7}^{16}\oplus L_{9}^{16}\underrightarrow{\oplus K_{9}^{15}})\odot (R_{8}^{16}\odot R_{15}^{16}\oplus R_{14}^{16}\oplus L_{0}^{16}\underrightarrow{\oplus K_{0}^{15}}) \\ & \oplus (R_{7}^{16}\odot R_{14}^{16}\oplus R_{13}^{16}\oplus L_{15}^{16}\underleftarrow{\oplus K_{15}^{15}})\oplus R_{1}^{16}\underleftarrow{\oplus K_{1}^{14}}] \\ & \oplus (R_{11}^{16}\odot R_{2}^{16}\oplus R_{1}^{16}\oplus L_{3}^{16}\underleftarrow{\oplus K_{3}^{15}})\underleftarrow{\oplus K_{3}^{13}} \\ \end{align}$ | |
& [(R_{3}^{16}\odot R_{10}^{16}\oplus R_{9}^{16}\oplus L_{11}^{16}\underrightarrow{\oplus K_{11}^{15}})\odot (R_{10}^{16}\odot R_{1}^{16}\oplus R_{0}^{16}\oplus L_{2}^{16}\underrightarrow{\oplus K_{2}^{15}}) \\ & \oplus (R_{9}^{16}\odot R_{0}^{16}\oplus R_{15}^{16}\oplus L_{1}^{16}\underrightarrow{\oplus K_{1}^{15}})\oplus R_{3}^{16}\underrightarrow{\oplus K_{3}^{14}}] \\ & \odot [(R_{10}^{16}\odot R_{1}^{16}\oplus R_{0}^{16}\oplus L_{2}^{16}\underrightarrow{\oplus K_{2}^{15}})\odot (R_{1}^{16}\odot R_{8}^{16}\oplus R_{7}^{16}\oplus L_{9}^{16}\underrightarrow{\oplus K_{9}^{15}}) \\ & \oplus (R_{0}^{16}\odot R_{7}^{16}\oplus R_{6}^{16}\oplus L_{8}^{16}\underrightarrow{\oplus K_{8}^{15}})\oplus R_{10}^{16}\underrightarrow{\oplus K_{10}^{14}}] \\ & \oplus [(R_{9}^{16}\odot R_{0}^{16}\oplus R_{15}^{16}\oplus L_{1}^{16}\underrightarrow{\oplus K_{1}^{15}})\odot (R_{0}^{16}\odot R_{7}^{16}\oplus R_{6}^{16}\oplus L_{8}^{16}\underrightarrow{\oplus K_{8}^{15}}) \\ & \oplus (R_{15}^{16}\odot R_{6}^{16}\oplus R_{5}^{16}\oplus L_{7}^{16}\underleftarrow{\oplus K_{7}^{15}})\oplus R_{9}^{16}\underleftarrow{\oplus K_{9}^{14}}] \\ & \oplus (R_{3}^{16}\odot R_{10}^{16}\oplus R_{9}^{16}\oplus L_{11}^{16}\underleftarrow{\oplus K_{11}^{15}})\underleftarrow{\oplus K_{11}^{13}} \\ \end{align}$ |
表7
SIMON 48算法的6轮线性逼近
轮数/轮 | 掩码(左) | 掩码(右) | 线性 偏差 |
---|---|---|---|
0 | 0000 0000 0000 0000 0000 0000 | 0000 0000 0000 0000 0000 0100 | — |
1 | 0000 0000 0000 0000 0000 0100 | 0000 0000 0000 0000 0000 0001 | |
2 | 0000 0000 0000 0000 0000 0001 | 0100 0000 0000 0000 0000 0100 | |
3 | 0100 0000 0000 0000 0000 0100 | 0001 0000 0000 0000 0000 0000 | |
4 | 0001 0000 0000 0000 0000 0000 | 0100 0100 0000 0000 0000 0100 | |
5 | 0100 0100 0000 0000 0000 0100 | 0000 0001 0000 0000 0000 0001 | |
6 | 0000 0001 0000 0000 0000 0001 | 0000 0100 0100 0000 0000 0100 |
表8
SIMON 48算法的15轮密钥恢复攻击关系
等式左边 | 等式右边 |
---|---|
& (R_{10}^{15}\odot R_{17}^{15}\oplus R_{16}^{15}\oplus L_{18}^{15}\underrightarrow{\oplus K_{18}^{14}})\odot (R_{17}^{15}\odot R_{0}^{15}\oplus R_{23}^{15}\oplus L_{1}^{15}\underrightarrow{\oplus K_{1}^{14}}) \\ & \oplus (R_{16}^{15}\odot R_{23}^{15}\oplus R_{22}^{15}\oplus L_{0}^{15}\underleftarrow{\oplus K_{0}^{14}})\oplus R_{2}^{15}\underleftarrow{\oplus K_{2}^{13}} \\ \end{align}$ | |
& (R_{22}^{15}\odot R_{5}^{15}\oplus R_{4}^{15}\oplus L_{6}^{15}\underrightarrow{\oplus K_{6}^{14}})\odot (R_{5}^{15}\odot R_{12}^{15}\oplus R_{11}^{15}\oplus L_{13}^{15}\underrightarrow{\oplus K_{13}^{14}}) \\ & \oplus (R_{4}^{15}\odot R_{11}^{15}\oplus R_{10}^{15}\oplus L_{12}^{15}\underleftarrow{\oplus K_{12}^{14}})\oplus R_{14}^{15}\underleftarrow{\oplus K_{14}^{13}} \\ \end{align}$ | |
& (R_{2}^{15}\odot R_{8}^{15}\oplus R_{9}^{15}\oplus L_{10}^{15}\underrightarrow{\oplus K_{10}^{14}})\odot (R_{9}^{15}\odot R_{16}^{15}\oplus R_{15}^{15}\oplus L_{17}^{15}\underrightarrow{\oplus K_{17}^{14}}) \\ & \oplus (R_{8}^{15}\odot R_{15}^{15}\oplus R_{14}^{15}\oplus L_{16}^{15}\underleftarrow{\oplus K_{16}^{14}})\oplus R_{18}^{15}\underleftarrow{\oplus K_{18}^{13}} \\ \end{align}$ |
表9
SIMON 48算法的16轮密钥恢复攻击关系
等式左边 | 等式右边 |
---|---|
& (R_{8}^{16}\odot R_{15}^{16}\oplus R_{14}^{16}\oplus L_{16}^{16}\underrightarrow{\oplus K_{16}^{15}})\odot (R_{15}^{16}\odot R_{22}^{16}\oplus R_{21}^{16}\oplus L_{23}^{16}\underrightarrow{\oplus K_{23}^{15}}) \\ & \oplus (R_{14}^{16}\odot R_{21}^{16}\oplus R_{20}^{16}\oplus L_{22}^{16}\underleftarrow{\oplus K_{22}^{15}})\oplus R_{0}^{16}\underleftarrow{\oplus K_{0}^{14}} \\ \end{align}$ | |
& (R_{0}^{16}\odot R_{7}^{16}\oplus R_{6}^{16}\oplus L_{8}^{16}\underrightarrow{\oplus K_{8}^{15}})\odot (R_{7}^{16}\odot R_{14}^{16}\oplus R_{13}^{16}\oplus L_{15}^{16}\underrightarrow{\oplus K_{15}^{15}}) \\ & \oplus (R_{6}^{16}\odot R_{13}^{16}\oplus R_{12}^{16}\oplus L_{14}^{16}\underleftarrow{\oplus K_{14}^{15}})\oplus R_{16}^{16}\underleftarrow{\oplus K_{16}^{14}} \\ \end{align}$ | |
& [(R_{2}^{16}\odot R_{9}^{16}\oplus R_{8}^{16}\oplus L_{10}^{16}\underrightarrow{\oplus K_{10}^{15}})\odot (R_{9}^{16}\odot R_{16}^{16}\oplus R_{15}^{16}\oplus L_{17}^{16}\underrightarrow{\oplus K_{17}^{15}}) \\ & \oplus (R_{8}^{16}\odot R_{15}^{16}\oplus R_{14}^{16}\oplus L_{16}^{16}\underrightarrow{\oplus K_{16}^{15}})\oplus R_{18}^{16}\underrightarrow{\oplus K_{18}^{14}}] \\ & \odot [(R_{9}^{16}\odot R_{16}^{16}\oplus R_{15}^{16}\oplus L_{17}^{16}\underrightarrow{\oplus K_{17}^{15}})\odot (R_{16}^{16}\odot R_{23}^{16}\oplus R_{22}^{16}\oplus L_{0}^{16}\underrightarrow{\oplus K_{0}^{15}}) \\ & \oplus (R_{15}^{16}\odot R_{22}^{16}\oplus R_{21}^{16}\oplus L_{23}^{16}\underrightarrow{\oplus K_{23}^{15}})\oplus R_{1}^{16}\underrightarrow{\oplus K_{1}^{14}}] \\ & \oplus [(R_{8}^{16}\odot R_{15}^{16}\oplus R_{14}^{16}\oplus L_{16}^{16}\underrightarrow{\oplus K_{16}^{15}})\odot (R_{15}^{16}\odot R_{22}^{16}\oplus R_{21}^{16}\oplus L_{23}^{16}\underrightarrow{\oplus K_{23}^{15}}) \\ & \oplus (R_{14}^{16}\odot R_{21}^{16}\oplus R_{20}^{16}\oplus L_{22}^{16}\underleftarrow{\oplus K_{22}^{15}})\oplus R_{0}^{16}\underleftarrow{\oplus K_{0}^{14}}] \\ & \oplus (R_{18}^{16}\odot R_{1}^{16}\oplus R_{0}^{16}\oplus L_{2}^{16}\underleftarrow{\oplus K_{2}^{15}})\underleftarrow{\oplus K_{2}^{13}} \\ \end{align}$ | |
& [(R_{14}^{16}\odot R_{21}^{16}\oplus R_{20}^{16}\oplus L_{22}^{16}\underrightarrow{\oplus K_{22}^{15}})\odot (R_{21}^{16}\odot R_{4}^{16}\oplus R_{3}^{16}\oplus L_{5}^{16}\underrightarrow{\oplus K_{5}^{15}}) \\ & \oplus (R_{20}^{16}\odot R_{3}^{16}\oplus R_{2}^{16}\oplus L_{4}^{16}\underrightarrow{\oplus K_{4}^{15}})\oplus R_{6}^{16}\underrightarrow{\oplus K_{6}^{14}}] \\ & \odot [(R_{21}^{16}\odot R_{4}^{16}\oplus R_{3}^{16}\oplus L_{5}^{16}\underrightarrow{\oplus K_{5}^{15}})\odot (R_{4}^{16}\odot R_{11}^{16}\oplus R_{10}^{16}\oplus L_{12}^{16}\underrightarrow{\oplus K_{12}^{15}}) \\ & \oplus (R_{3}^{16}\odot R_{10}^{16}\oplus R_{9}^{16}\oplus L_{11}^{16}\underrightarrow{\oplus K_{11}^{15}})\oplus R_{13}^{16}\underrightarrow{\oplus K_{13}^{14}}] \\ & \oplus [(R_{20}^{16}\odot R_{3}^{16}\oplus R_{2}^{16}\oplus L_{4}^{16}\underrightarrow{\oplus K_{4}^{15}})\odot (R_{3}^{16}\odot R_{10}^{16}\oplus R_{9}^{16}\oplus L_{11}^{16}\underrightarrow{\oplus K_{11}^{15}}) \\ & \oplus (R_{2}^{16}\odot R_{9}^{16}\oplus R_{8}^{16}\oplus L_{10}^{16}\underleftarrow{\oplus K_{10}^{15}})\oplus R_{12}^{16}\underleftarrow{\oplus K_{12}^{14}}] \\ & \oplus (R_{6}^{16}\odot R_{13}^{16}\oplus R_{12}^{16}\oplus L_{14}^{16}\underleftarrow{\oplus K_{14}^{15}})\underleftarrow{\oplus K_{14}^{13}} \\ \end{align}$ | |
& [(R_{18}^{16}\odot R_{1}^{16}\oplus R_{0}^{16}\oplus L_{2}^{16}\underrightarrow{\oplus K_{2}^{15}})\odot (R_{1}^{16}\odot R_{8}^{16}\oplus R_{7}^{16}\oplus L_{9}^{16}\underrightarrow{\oplus K_{9}^{15}}) \\ & \oplus (R_{0}^{16}\odot R_{7}^{16}\oplus R_{6}^{16}\oplus L_{8}^{16}\underrightarrow{\oplus K_{8}^{15}})\oplus R_{10}^{16}\underrightarrow{\oplus K_{10}^{14}}] \\ & \odot [(R_{1}^{16}\odot R_{8}^{16}\oplus R_{7}^{16}\oplus L_{9}^{16}\underrightarrow{\oplus K_{9}^{15}})\odot (R_{8}^{16}\odot R_{15}^{16}\oplus R_{14}^{16}\oplus L_{16}^{16}\underrightarrow{\oplus K_{16}^{15}}) \\ & \oplus (R_{7}^{16}\odot R_{14}^{16}\oplus R_{13}^{16}\oplus L_{15}^{16}\underrightarrow{\oplus K_{15}^{15}})\oplus R_{17}^{16}\underrightarrow{\oplus K_{17}^{14}}] \\ & \oplus [(R_{0}^{16}\odot R_{7}^{16}\oplus R_{6}^{16}\oplus L_{8}^{16}\underrightarrow{\oplus K_{8}^{15}})\odot (R_{7}^{16}\odot R_{14}^{16}\oplus R_{13}^{16}\oplus L_{15}^{16}\underrightarrow{\oplus K_{15}^{15}}) \\ & \oplus (R_{6}^{16}\odot R_{13}^{16}\oplus R_{12}^{16}\oplus L_{14}^{16}\underleftarrow{\oplus K_{14}^{15}})\oplus R_{16}^{16}\underleftarrow{\oplus K_{16}^{14}}] \\ & \oplus (R_{10}^{16}\odot R_{17}^{16}\oplus R_{16}^{16}\oplus L_{18}^{16}\underleftarrow{\oplus K_{18}^{15}})\underleftarrow{\oplus K_{18}^{13}} \\ \end{align}$ |
[1] | FIPS. FIPS 46 Data Encryption Standard[EB/OL]. (1977-01-15)[2022-03-21]. https://csrc.nist.gov/publications/detail/fips/46/archive/1977-01-15. |
[2] | DIFFIE W, HELLMAN M E. Special Feature Exhaustive Cryptanalysis of the NBS Data Encryption Standard[J]. Computer, 1977, 10(6): 74-84. |
[3] | BIHAM E, SHAMIR A. Differential Cryptanalysis of DES-Like Cryptosystems[C]// Springer. 10th Annual International Cryptology Conference. Berlin: Springer, 1990: 2-21. |
[4] | MATSUI M. Linear Cryptanalysis Method for DES Cipher[C]// Springer. Workshop on the Theory and Application of of Cryptographic Techniques. Berlin:Springer, 1993: 386-397. |
[5] | LANGFORD S, HELLMAN M E. Differential-Linear Cryptanalysis[C]// Springer. 14th Annual International Cryptology Conference. Berlin: Springer, 1994: 17-25. |
[6] | BIHAM E, DUNKELMAN O, KELLER N. Enhancing Differential-Linear Cryptanalysis[C]// Springer. 8th International Conference on the Theory and Application of Cryptology and Information Security. Berlin:Springer, 2002: 254-266. |
[7] | LU Jiqiang. A Methodology for Differential-Linear Cryptanalysis and Its Applications[C]// Springer. 19th International Workshop. Berlin:Springer, 2012: 69-89. |
[8] | BAR-ON A, DUNKELMAN O, KELLER N, et al. DLCT: A New Tool for Differential-Linear Cryptanalysis[C]// Springer. 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin:Springer, 2019: 313-342. |
[9] | CANTEAUT A, KOLSCH L, LI Chao, et al. Autocorrelations of Vectorial Boolean functions[C]// Springer. 7th International Conference on Cryptology and Information Security in Latin America. Berlin:Springer, 2021: 233-253. |
[10] | LIU Meicheng, LU Xiaojuan, LIN Dongdai. Differential-Linear Cryptanalysis from an Algebraic Perspective[C]// Springer. 41st Annual International Cryptology Conference. Berlin:Springer, 2021: 247-277. |
[11] | HE Yeping, WU Wenling, QING Sihan. Truncated Differential-Linear Cryptanalysis[J]. Journal of Software, 2000, 11(10): 1294-1298. |
贺也平, 吴文玲, 卿斯汉. 截断差分—线性密码分析[J]. 软件学报, 2000, 11(10): 1294-1298. | |
[12] | BIHAM E, DUNKELMAN O, NATHAN Keller. Differential-Linear Cryptanalysis of Serpent[C]// Springer. 10th International Workshop. Berlin:Springer, 2003: 9-21. |
[13] | BLONDEAU C, GREGOR L, NYBERG K. Differential-Linear Cryptanalysis Revisited[J]. Journal of Cryptology, 2017, 30(3): 859-888. |
[14] | BEAULIEU R, SHORS D, SMITH J, et al. The SIMON and SPECK Families of Lightweight Block Ciphers[C]// ACM. 52nd Annual Design Automation Conference. New York: ACM, 2015: 1-6. |
[15] | ALKHZAIMI H A, LAURIDSEN M M. Cryptanalysis of the SIMON Family of Block Ciphers[EB/OL]. (2013-08-30)[2022-03-05]. https://eprint.iacr.org/2013/543. |
[16] | SUN Siwei, HU Lei, WANG Peng, et a1. Automatic Security Evaluation and (Related-Key) Differential Characteristic Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other Bit-Oriented Block Ciphers[C]// Springer. 20th International Conference on the Theory and Application of Cryptology and Information Security. Berlin:Springer, 2014: 158-178. |
[17] | ABDELRAHEEM M A, ALIZADEH J, ALKHZAIMI H A, et al. Improved Linear Cryptanalysis of Reduced-Round SIMON-32 and SIMON-48[C]// Springer. 16th International Conference on Cryptology. Berlin:Springer, 2015: 153-179. |
[18] | LIU Zhengbin, LI Yongqiang, WANG Mingsheng. The Security of SIMON-Like Ciphers against Linear Cryptanalysis[EB/OL]. (2017-06-13)[2022-03-21]. https://eprint.iacr.org/2017/576.pdf. |
[19] | TODO Y. Structural Evaluation by Generalized Integral Property[C]// Springer. 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin:Springer, 2015: 287-314. |
[20] | TODO Y, MORII M. Bit-Based Division Property and Application to SIMON Family[C]// Springer. 23rd International Conference. Berlin:Springer, 2016: 357-377. |
[21] | XIANG Zejun, ZHANG Wentao, LIN Dongdai. On the Division Property of Simon 48 and Simon 64[EB/OL]. (2016-09-06)[2022-03-21]. https://eprint.iacr.org/2016/839. |
[22] | CHEN Yanqin, ZHANG Wenying. Differential-Linear Cryptanalysis of SIMON 32/64[J]. International Journal of Embedded Systems, 2018, 10(3): 196-202. |
[23] | LI Chao, SUN Bing, LI Ruilin. Attack Method and Example Analysis of Block Cipher[M]. Beijing: Science Press, 2010. |
李超, 孙兵, 李瑞林. 分组密码的攻击方法与实例分析[M]. 北京: 科学出版社, 2010. |
[1] | 佟晓筠, 苏煜粤, 张淼, 王翥. 基于混沌和改进广义Feistel结构的轻量级密码算法[J]. 信息网络安全, 2022, 22(8): 8-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||