信息网络安全 ›› 2022, Vol. 22 ›› Issue (5): 37-45.doi: 10.3969/j.issn.1671-1122.2022.05.005
收稿日期:
2022-02-10
出版日期:
2022-05-10
发布日期:
2022-06-02
通讯作者:
王利明
E-mail:wangliming@iie.ac.cn
作者简介:
孔嘉琪(1997—),女,山西,硕士研究生,主要研究方向为数据安全|王利明(1978—),男,北京,正高级工程师,博士,主要研究方向为云计算安全、网络安全、大数据安全、5G安全、区块链安全|葛晓雪(1997—),女,河北,硕士研究生,主要研究方向为数据安全
基金资助:
KONG Jiaqi1,2, WANG Liming1(), GE Xiaoxue1,2
Received:
2022-02-10
Online:
2022-05-10
Published:
2022-06-02
Contact:
WANG Liming
E-mail:wangliming@iie.ac.cn
摘要:
近年来,随着数据开放程度的提升,数据库水印成为了一种越来越重要的安全手段。数据库水印可以对泄露数据进行版权认证和溯源追责,保障数据的安全。现有的数据库水印嵌入方案存在水印容量低、抗攻击的鲁棒性较弱等问题,无法对数据进行有效保护。文章提出了PADEW数据库水印方案,PADEW使用基于模拟退火改进的粒子群算法寻找更好的水印嵌入位置,以解决一些现有方案容易陷入局部最优解的问题,从而提高水印嵌入容量并降低水印嵌入引起的失真。PADEW提出了基于属性重要度的带权损失函数,以解决现有方案在抗属性维度攻击时鲁棒性较弱的问题。文章使用水印嵌入容量、平均失真和面对多种攻击时的水印检测率评估PADEW的性能,并和现有的一些方案进行对比。实验表明,PADEW能在提高水印容量的同时,降低水印嵌入引起的失真。并且,PADEW有较强的抗攻击的鲁棒性,包括元组删除攻击、元组添加攻击、比特翻转攻击和属性删除攻击。尤其在面对50%的属性删除攻击时,水印检测率仍然高达81%。
中图分类号:
孔嘉琪, 王利明, 葛晓雪. 基于模拟退火和粒子群混合改进算法的数据库水印技术[J]. 信息网络安全, 2022, 22(5): 37-45.
KONG Jiaqi, WANG Liming, GE Xiaoxue. Simulated Annealing and Particle Swarm Enhanced Relational Database Watermark[J]. Netinfo Security, 2022, 22(5): 37-45.
[1] | Canalys. Cybersecurity Investment 2020[EB/OL]. [2022-04-12]. https://www.canalys.com/reports/cybersecurity-market. |
[2] | AGRAWAL R, KIERNAN J. Watermarking Relational Databases[C]// VLDB. Proceedings of 28th International Conference on Very Large Data Bases. San Fransisco: Morgan Kaufmann, 2002: 155-166. |
[3] | GUO Fei, WANG Jianmin, LI Deyi. Fingerprinting Relational Databases[C]// SAC. Proceedings of the 2006 ACM Symposium on Applied computing. New York: ACM, 2006: 487-492. |
[4] | GUPTA G, PIEPRZYK J. Reversible and Blind Database Watermarking Using Difference Expansion[C]// e-Forensics. Proceedings of the 1st International Conference on Forensic Applications and Techniques in Telecommunications, Information, and Multimedia and Workshop. Brussels, BEL: ICST, 2008: 6-14. |
[5] | CHAI Heyan, YANG Shuqiang. A Robust and Reversible Watermarking Technique for Relational Dataset Based on Clustering[C]// TrustCom/BigDataSE. 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering. New Zealand: IEEE, 2019: 411-418. |
[6] |
JAWAD K, KHAN A. Genetic Algorithm and Difference Expansion Based Reversible Watermarking for Relational Databases[J]. Journal of Systems and Software, 2013, 86(11): 2742-2753.
doi: 10.1016/j.jss.2013.06.023 URL |
[7] |
HU Donghui, ZHAO Dan, ZHENG Shuli. A New Robust Approach for Reversible Database Watermarking with Distortion Control[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(6): 1024-1037.
doi: 10.1109/TKDE.2018.2851517 URL |
[8] | PARSOPOULOS K E, VRAHATIS M N. Particle Swarm Optimization Method for Constrained Optimization Problems[J]. Intelligent Technologies-Theory and Application: New Trends in Intelligent Technologies, 2002, 76(1): 214-220. |
[9] |
KAMRAN M, FAROOQ M. An Information-Preserving Watermarking Scheme for Right Protection of EMR Systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 24(11): 1950-1962.
doi: 10.1109/TKDE.2011.223 URL |
[10] |
KAMRAN M, SUHAIL S, FAROOQ M. A Robust, Distortion Minimizing Technique for Watermarking Relational Databases Using Once-for-All Usability Constraints[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(12): 2694-2707.
doi: 10.1109/TKDE.2012.227 URL |
[11] |
SHEHAB M, BERTINO E, GHAFOOR A. Watermarking Relational Databases Using Optimization-Based Techniques[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 20(1): 116-129.
doi: 10.1109/TKDE.2007.190668 URL |
[12] | UNNIKRISHNAN K, PRAMOD K V. Robust Aptimal Position Detection Scheme for Relational Database Watermarking Through HOLPSOFA Algorithm[J]. Journal of Information Security& Applications, 2017, 35(8): 1-12. |
[13] | IFTIKHAR S, KAMRAN M. RRW-A Robust and Reversible Watermarking Technique for Relational Data[J]. IEEE Transactions on Knowledge& Data Engineering, 2014, 27(4): 1132-1145. |
[14] | MACQUEEN J. Some Methods for Classification and Analysis of MultiVariate Observations[C]// Berkeley. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. USA: University of California Press, 1967:281-297. |
[15] | KENNEDY J, EBERHART R. Particle Swarm Optimization[C]// IEEE. Proceedings of ICNN'95-International Conference on Neural Networks. New York: IEEE, 1995: 1942-1948. |
[16] |
METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equation of State Calculations by Fast Computing Machines[J]. The Journal of Chemical Physics, 1953, 21(6): 1087-1092.
doi: 10.1063/1.1699114 URL |
[17] | LIU Aijun, YANG Yu, LI Fei, et al. Chaotic Simulated Annealing Particle Swarm Optimization Algorithm Research and Its Application[J]. Journal of Zhejiang University(Engineering Science), 2013, 47(10): 1722-1730. |
刘爱军, 杨育, 李斐, 等. 混沌模拟退火粒子群优化算法研究及应用[J]. 浙江大学学报(工学版), 2013, 47(10): 1722-1730. | |
[18] | WANG Huaqiu, CAO Changxiu. Parallel Particle Swarm Optimization Based on Simulated Annealing[J]. Control and Decision, 2005(5): 500-504. |
王华秋, 曹长修. 基于模拟退火的并行粒子群优化研究[J]. 控制与决策, 2005(5):500-504. | |
[19] | ZHAO Xinye, TANG Shuai, YANG Mei, et al. Hybrid Algorithm Based on Particle Swarm Optimization and Simulated in Timed Influence Nets[J]. Computer Science, 2012, 39(Z3): 63-66. |
赵鑫业, 唐帅, 杨妹, 等. 基于赋时影响网的模拟退火与粒子群混合改进算法[J]. 计算机科学, 2012, 39(Z3):63-66. |
[1] | 宋玉龙, 王磊, 武欣嵘, 曾维军. 基于模拟退火自适应粒子群算法的WSN拓扑抗毁性方法研究[J]. 信息网络安全, 2021, 21(6): 89-96. |
[2] | 王文华, 郝新, 刘焱, 王洋. AI系统的安全测评和防御加固方案[J]. 信息网络安全, 2020, 20(9): 87-91. |
[3] | 余晴, 郑崇辉, 杜晔. 面向云平台虚拟层的安全态势评估关键技术研究[J]. 信息网络安全, 2020, 20(7): 53-59. |
[4] | 仲明, 贾徽徽, 姜丽莹, 王潮. 基于量子退火算法的DPA防御系统优化[J]. 信息网络安全, 2016, 16(3): 28-33. |
[5] | 李凤海;张佰龙;刘皖;陈长敏. 小型专用电子设备抗攻击检测算法研究[J]. , 2013, 13(10): 0-0. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 205
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 281
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||