信息网络安全 ›› 2015, Vol. 15 ›› Issue (5): 69-76.doi: 10.3969/j.issn.1671-1122.2015.05.011

• 理论研究 • 上一篇    下一篇

高速网络下P2P流量识别研究

穆筝1(), 吴进1, 许书娟2   

  1. 1.国家计算机网络应急技术处理协调中心辽宁分中心,辽宁沈阳 110036
    2.中国移动通信集团辽宁有限公司,辽宁沈阳110179
  • 收稿日期:2015-04-09 出版日期:2015-05-10 发布日期:2018-07-16
  • 作者简介:

    作者简介: 穆筝(1981-),男,辽宁,工程师,硕士,主要研究方向:网络信息安全;吴进(1978-),男,辽宁,工程师,本科,主要研究方向:网络信息安全;许书娟(1982-),女,河北,工程师,硕士,主要研究方向:移动互联网。

  • 基金资助:
    国家自然科学基金[61171193];国家科技支撑计划[2015BAK21B01]

Research on P2P Traffic Identification Under the High Speed Network

MU Zheng1(), WU Jin1, XU Shu-juan2   

  1. 1. CNCERT/CC-LN, Shenyang Liaoning 110036, China
    2. China Mobile Group Liaoning co., ltd, Shenyang Liaoning 110179, China
  • Received:2015-04-09 Online:2015-05-10 Published:2018-07-16

摘要:

网络流量分类是指将混有各种应用的流量按照流量所使用的协议进行分类。网络流量分类一直是各界共同关注的热点之一。研究网络流量分类可以为设计下一代高性能网络协议提供基础,可以为网络管理和网络流量调度提供依据,可以为网络攻击防护和流量清洗提供支撑。文章分析了当今主流的网络流量识别方法,归纳总结了流量分类技术的发展现状和研究成果。文章针对P2P流量迅猛增长的现状和高速网络下数据流量的特性,重点研究高速网络下P2P流量的二元分类方法,首先采用基于传输层行为的流量识别方法将部分样本数据流分为P2P流量和非P2P流量,并根据分类结果动态生成有标记的特征训练集,有效避免了网络数据流发生变化后导致分类算法所使用的样本特征集不准确的情况;然后提出一种基于C4.5决策树算法的P2P流量识别方法,该方法只需计算一个数据流的前若干个数据包即可完成流量识别,无需考虑数据流的单双向和数据加密等问题。实验表明该方法识别准确率高,计算复杂度低,适用于高速网络下的流量识别。

关键词: 高速网络, P2P, 流量识别

Abstract:

Network traffic classification refers to classify the flow which mixed with a variety of applications in accordance with the protocol which flow used. Network traffic classification has been one of the hot spot in all walks of life. Research on network traffic classification can provide the basis to design the next generation of high performance network protocol, can provide the gist for network management and network traffic scheduling, can provide support for network attack protection and traffic cleaning. This paper analyzes the network traffic identification methods in nowadays mainstream sand summarized the flow classification technology development present situation and research results. According to current situation of rapid growth of P2P traffic and the characteristics of high-speed network traffic, focuses on the binary classification method of P2P traffic which under the high-speed networks. In this paper, data stream can be divided into P2P traffic and the normal network traffic by the traffic identification methods based on the behavior of the transport layer firstly, and dynamically generate marked characteristic of the training set according to the results of the classification. Effectively avoids the sample set which is used by the classification algorithm is not accurate because of the network data flow changed. And then put forward a kind of P2P traffic identification method based on C4.5 decision tree, this method only need to calculate several packets which in a data flow, and then the network traffic identification is completed. Don’t need to concern of single or double direction of the data flow, data encryption, etc. Experiments show that the recognition accuracy of this method is high; the computational complexity is low, suitable for high-speed network traffic identification.

Key words: high speed network, P2P, traffic identification

中图分类号: