信息网络安全 ›› 2015, Vol. 15 ›› Issue (3): 74-78.doi: 10.3969/j.issn.1671-1122.2015.03.015

• 理论研究 • 上一篇    下一篇

基于决策树的流媒体视频用户体验质量评测模型研究

闫丹(), 魏芳   

  1. 北京邮电大学信息与通信工程学院,北京 100876
  • 收稿日期:2014-11-04 出版日期:2015-03-10 发布日期:2015-05-08
  • 作者简介:

    作者简介: 闫丹(1989-),女,辽宁,硕士研究生,主要研究方向:视频质量评测;魏芳(1978-),女,湖北,副教授,博士,主要研究方向:数字多媒体。

  • 基金资助:
    国家重大专项[2012ZX03001033]

Research on Model of QoE Assessment for Streaming Videos Based on Decision Tree

YAN Dan(), WEI Fang   

  1. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2014-11-04 Online:2015-03-10 Published:2015-05-08

摘要:

文章提出了一种基于决策树的无参考视频用户体验质量评测模型。该模型通过从网络物理层包级别和应用层视频帧级别提取一系列描绘视频特性及网络丢包和时延损伤的特征参数,采用决策树统计学习方法对流媒体服务的用户体验质量进行评测。其中,所有特征参数仅从网络视频数据包的包头部分提取解析,不涉及视频流的解码,从而大大降低了模型的计算复杂度,使评测模型具有独立于视频编码方式的优点。决策树统计学习方法具有分类速度快、可读性高等特点,可以保证实时得到用户体验质量评测结果,同时也可以给出特征参数的相对重要性,为未来的研究工作提供理论依据。实验结果显示,与其他仅考虑单一或部分特征参数的模型相比,同时考虑视频特性及网络丢包和时延损伤的评测模型在预测结果的准确性和一致性方面均有较好的表现。该模型可用于流媒体服务质量实时监控系统。

关键词: 无参考用户体验质量评测, 决策树, 视频特性, 网络丢包, 网络时延

Abstract:

This paper introduces an NR decision tree based QoE assessment model. The proposed model assesses quality of user experience of streaming videos using decision tree statistical learning method with a set of video-related features and network distortion features extracted from both the packet header at the packet level in the physical layer and at the video frame level in the application layer. These features are extracted solely from the packet header without further decoding of the video bitstreams, which decreases the computational complexity and makes the model independent of the encoding method. Thanks to decision tree’s high readability and fast classification speed, several decision trees have been built with different combinations of above feature subsets to study the relative importance of features. The result shows that the proposed model, which considers video-related features and both kinds of network distortions, outperforms the other resulting ones in terms of predict accuracy and monotonicity. This model can be used in the real-time streaming video quality monitoring systems.

Key words: QoE assessment, decision tree, video-related features, packet loss, delay

中图分类号: