Netinfo Security ›› 2025, Vol. 25 ›› Issue (11): 1745-1761.doi: 10.3969/j.issn.1671-1122.2025.11.008
Previous Articles Next Articles
ZHAO Bo1,2(
), LYU Jiamin1,2, WANG Yixuan1,2
Received:2025-06-11
Online:2025-11-10
Published:2025-12-02
CLC Number:
ZHAO Bo, LYU Jiamin, WANG Yixuan. A Multidimensional Security Measurement Architecture for the Container Lifecycle[J]. Netinfo Security, 2025, 25(11): 1745-1761.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2025.11.008
| 测试项 | avg | min | P50 | P95 | P99 | max |
|---|---|---|---|---|---|---|
| PING_INLINE | 11.3% | 24.1 | 7.2% | 24.1% | 56.7% | 133.9% |
| PING_MBULK | -1.8% | 0 | 0 | 0 | 0 | -20.1% |
| SET | 10.1% | 30.1% | 2.6% | 30.1% | 39.8% | 96.0% |
| GET | -0.4% | -2.0% | 0 | -2.0% | -9.9% | -2.6% |
| INCR | 9.9% | 37.1% | 6.5% | 37.1% | 51.8% | 40.2% |
| LPUSH | 8.5% | 31.3% | 5.9% | 31.3% | 54.5% | 117.2% |
| RPUSH | 0 | 6.0% | -2.9% | 6.0% | 6.0% | 22.9% |
| LPOP | 4.4% | 11.3% | 0 | 11.3% | 29.7% | 132.6% |
| RPOP | 4.5% | 20.0% | 2.7% | 20.0% | 25.0% | -36.2% |
| SADD | 8.1% | 29.2% | 3.0% | 29.2% | 33.4% | 135.9% |
| HSET | 6.4% | 19.7% | 5.6% | 19.7% | 31.3% | 47.8% |
| SPOP | 6.3% | 18.7% | 7.2% | 18.7% | 11.4% | 188.2% |
| ZADD | 3.9% | 15.1% | 0 | 15.1% | 18.9% | 131.8% |
| ZPOPMIN | 2.8% | 13.1% | 3.5% | 13.1% | 4.2% | 6.2% |
| XADD | 3.8% | 16.9% | 1.9% | 16.9% | 29.4% | -61.7% |
| [1] | JARKAS O, KO R, DONG N, et al. A Container Security Survey: Exploits, Attacks, and Defenses[J]. ACM Computing Surveys, 2025, 57(7): 279-314. |
| [2] | ZHANG Xinyi, WU Zehui, JIA Qiong, et al. Demand-Driven Container Security Policy Automatic Generation Technology[J]. Journal of Chinese Computer Systems. 2024, 45(4): 951-959. |
| 张新义, 武泽慧, 贾琼, 等. 需求驱动的容器安全策略自动生成技术[J]. 小型微型计算机系统. 2024, 45(4): 951-959. | |
| [3] | VS D P, SETHURAMAN S C, KHAN M K. Container Security: Precaution Levels, Mitigation Strategies and Research Perspectives[EB/OL]. (2023-09-22)[2025-05-15]. https://www.sciencedirect.com/science/article/pii/S0167404823004005. |
| [4] | GAO Xing, GU Zhongshu, KAYAALP M, et al. Containerleaks: Emerging Security Threats of Information Leakages in Container Clouds[C]// IEEE. 2017 the 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). New York: IEEE, 2017: 237-248. |
| [5] |
LIU Ziwen, FENG Dengguo. Dynamic Integrity Measurement Architecture Based on Trusted Computing[J]. Journal of Electronics and Information Technology, 2010, 32(4):875-879.
doi: 10.3724/SP.J.1146.2009.00408 URL |
| 刘孜文, 冯登国. 基于可信计算的动态完整性度量架构[J]. 电子与信息学报, 2010, 32(4):875-879. | |
| [6] | HUA Zhichao, YU Yang, GU Jingyu, et al. TZ-Container: Protecting Container from Untrusted OS with ARM TrustZone[J]. China Information Sciences, 2021, 64(9): 192101-192117. |
| [7] | SONG Liantao, DING Yan, GUO Yong, et al. Dimac: Dynamic Integrity Measurement Architecture for Containers with ARM TrustZone[C]// IEEE. 2024 IEEE International Conference on Web Services (ICWS). New York: IEEE, 2024: 844-852. |
| [8] | HAN Yufei, LI Chao, ZHANG Jianbiao, et al. DMSCTS: Dynamic Measurement Scheme for the Containers-Hybrid-Deployment Based on Trusted Subsystem[EB/OL]. (2024-10-16)[2025-04-21]. https://www.sciencedirect.com/science/article/pii/S0167404824004632. |
| [9] | Intel. Intel® Trust Domain Extensions[EB/OL]. (2023-01-10)[2025-05-15]. https://www.intel.com/content/www/us/en/developer/tools/trust-domain-extensions/documentation.html. |
| [10] | Advanced Micro Devices. AMD SEV-SNP: Strengthening VM Isolation with Integrity Protection and More[EB/OL]. (2020-01-30)[2025-05-15]. https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf |
| [11] | ARM. ARM Confidential Compute Architecture[EB/OL]. (2021-07-23)[2025-05-15]. https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture. |
| [12] | MERKEL D. Docker: Lightweight Linux Containers for Consistent Development and Deployment[J]. Linux Journal, 2014, 239(2): 76-91. |
| [13] | MORABITO R, KJALLMAN J, KOMU M. Hypervisors vs. Lightweight Virtualization: A Performance Comparison[C]// IEEE. 2015 IEEE International Conference on Cloud Engineering. New York: IEEE, 2015: 386-393. |
| [14] | SOLTESZ S, POTZL H, FIUCZYNSKI M E, et al. Container-Based Operating System Virtualization: A Scalable, High-Performance Alternative to Hypervisors[J]. ACM SIGOPS Operating Systems Review, 2007, 42(3): 275-287. |
| [15] |
SULTAN S, AHMAD I, DIMITRIOU T. Container Security: Issues, Challenges and the Road Ahead[J]. IEEE Access, 2019, 7: 52976-52996.
doi: 10.1109/Access.6287639 URL |
| [16] | Microsoft. Secure the Windows Boot Process[EB/OL]. (2024-02-18)[2025-04-21]. https://learn.microsoft.com/en-us/windows/security/operating-system-security/system-security/secure-the-windows-10-boot-process. |
| [17] | TAO Zhe, RASTOGI A, GUPTA N, et al. DICE*: A Formally Verified Implementation of DICE Measured Boot[C]// USENIX. The 30th USENIX Security Symposium (USENIX Security 21). Berkeley: USENIX, 2021: 1091-1107. |
| [18] | STEFFEN A. The Linux Integrity Measurement Architecture and TPM-Based Network Endpoint Assessment[C]// Linux Foundation. Linux Security Summit. San Diego: Linux Foundation, 2012: 1-12. |
| [19] | LUO Wu, SHEN Qingni, XIA Yuyang, et al. Container-IMA: A Privacy-Preserving Integrity Measurement Architecture for Containers[C]// USENIX. The 22nd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019). Berkeley: USENIX, 2019: 487-500. |
| [20] | SUN Yuqiong, SAFFORD D, ZOHAR M, et al. Security Namespace: Making Linux Security Frameworks Available to Containers[C]// USENIX. The 27th USENIX Security Symposium (USENIX Security 18). Berkeley: USENIX, 2018: 1423-1439. |
| [21] | MCKEEN F, ALEXANDROVICH I, BERENZON A, et al. Innovative Instructions and Software Model for Isolated Execution[C]// ACM. The 2nd International Workshop on Hardware and Architectural Support for Security and Privacy (HASP 2013). New York: ACM, 2013: 73-81. |
| [22] | ARM. ARM TrustZone Technology[EB/OL]. (2019-02-05)[2025-05-19]. https://developer.arm.com/documentation/100690/0201/?lang=en. |
| [23] | HUA Zhichao, YU Yang, GU Jinyu, et al. TZ-Container: Protecting Container from Untrusted OS with ARM TrustZone[EB/OL]. (2021-08-19)[2025-05-15]. https://link.springer.com/article/10.1007/s11432-019-2707-6. |
| [24] | Confidential Containers Community. Enclave-CC: Process-Based Confidential Container Solution Leveraging Intel SGX[EB/OL]. (2022-01-13)[2025-05-15]. https://github.com/confidential-containers/enclave-cc. |
| [25] | Alibaba Cloud and CNCF. Inclavare Containers Overview[EB/OL]. (2022-06-30)[2025-05-15]. https://openanolis-downloads.oss-cn-beijing.aliyuncs.com/meetup/Inclavare-Containers_Overview_rev11.pdf. |
| [26] | BIONDO A, CONTI M, DAVI L, et al. The Guard’s Dilemma: Efficient Code-Reuse Attacks against Intel SGX[C]// USENIX. The 27th USENIX Security Symposium (USENIX Security 18). Berkeley: USENIX, 2018: 1213-1227. |
| [27] | ERLINGSSON M, JIGATTI J. Control-Flow Integrity[C]// ACM. The 12th ACM Conference on Computer and Communications Security. New York: ACM, 2005: 340-353. |
| [28] | BUCHANAN E, ROEMER R, SHACHAM H, et al. When Good Instructions Go Bad: Generalizing Return-Oriented Programming to RISC[C]// ACM. The 15th ACM Conference on Computer and Communications Security. New York: ACM, 2008: 27-38. |
| [29] | BLETSCH T, JIANG Xuxian, FREEH V W, et al. Jump-Oriented Programming: A New Class of Code-Reuse Attack[C]// ACM. The 6th ACM Symposium on Information, Computer and Communications Security. New York: ACM, 2011: 30-40. |
| [30] | NETO A J, NUNES I D O. ISC-FLAT: On the Conflict between Control Flow Attestation and Real-Time Operations[C]// IEEE. 2023 IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS). New York: IEEE, 2023: 133-146. |
| [31] | BIONDO A, CONTI M, DAVI L, et al. Modular Control-Flow Integrity[C]// ACM. The 2014 ACM Conference on Computer and Communications Security (CCS’14). New York: ACM, 2014: 577-587. |
| [32] | BAUER M, GRISHCHENKO I, ROSSOW C. TyPro: Forward CFI for C-Style Indirect Function Calls Using Type Propagation[C]// ACM. Annual Computer Security Applications Conference (ACSAC 2022). New York: ACM, 2022: 346-360. |
| [33] | ZHOU Jie, DU Yingqi, SHEN Zhi, et al. Silhouette: Efficient Protected Shadow Stacks for Embedded Systems[C]// USENIX.The 29th USENIX Security Symposium (USENIX Security 20). Berkeley: USENIX, 2020: 1219-1236. |
| [34] | WANG Jinwen, WANG Yujie, LI Ao, et al. ARI: Attestation of Real-Time Mission Execution Integrity[C]// USENIX. The 32nd USENIX Security Symposium (USENIX Security 23). Berkeley: USENIX, 2023: 2761-2778. |
| [35] | SUN Zhichuang, FENG Bo, LU Long, et al. OAT: Attesting Operation Integrity of Embedded Devices[C]// IEEE. 2020 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2020: 1433-1449. |
| [36] | CAULFIELD A, RATTANAVIPANON N, NUNES I D O. ACFA: Secure Runtime Auditing & Guaranteed Device Healing via Active Control Flow Attestation[C]// USENIX. The 32nd USENIX Security Symposium (USENIX Security 23). Berkeley: USENIX, 2023: 5827-5844. |
| [1] | SHI Yijuan, ZHOU Danping, FAN Lei, LIU Yin. Secure Multi-Party Computation Protocol Based on Trusted Execution Environment [J]. Netinfo Security, 2025, 25(9): 1439-1446. |
| [2] | LU Xinxi, GUO Jianwei, YUAN Lijuan, LIU Yan, XU Binbin, LIU Yang. Research on Container Security Framework Based on Namespace and Filesystem Proxy [J]. Netinfo Security, 2025, 25(8): 1196-1207. |
| [3] | HUANG Ke, LI Xuan, ZHOU Qingfei, SHANG Ketong, QIN Yu. A Trusted Runtime Monitoring Method Based on eBPF for Container [J]. Netinfo Security, 2025, 25(2): 306-326. |
| [4] | HAO Meng, LI Jiayong, YANG Hongwei, ZHANG Weizhe. Heterogeneous CPU-GPU System Confidential Computing Survey [J]. Netinfo Security, 2025, 25(11): 1658-1672. |
| [5] | GUAN Zhi, HU Jianbin, LI Yue, CHEN Zhong. A Comprehensive Survey of Blockchain Technologies and Applications Based on Trusted Execution Environments [J]. Netinfo Security, 2025, 25(11): 1673-1690. |
| [6] | XUE Kaiping, ZHANG Chunyi, LIU Feng, WANG Feng. Security-Enhanced Index Scheme in Encrypted Database Based on Trusted Execution Environment [J]. Netinfo Security, 2025, 25(11): 1718-1731. |
| [7] | WANG Yajie, LU Jinbiao, LI Yuhang, FAN Qing, ZHANG Zijian, ZHU Liehuang. Hierarchical Dynamic Protection Algorithm for Federated Learning Based on Trusted Execution Environment [J]. Netinfo Security, 2025, 25(11): 1762-1773. |
| [8] | LU Di, LIU Yujia, LYU Chaoyue, SUN Mengna, ZHANG Qingwen, YANG Li. Cloud-Native TEE Service Sharing Mechanism for Secure Edge Computing [J]. Netinfo Security, 2025, 25(11): 1774-1791. |
| [9] | HU Yuyi, CAI Wei, CHEN Jingfan, LIU Mohan, WANG Juan, HE Yun. Research on Unified Remote Attestation Mechanism for Confidential Containers Devices [J]. Netinfo Security, 2025, 25(11): 1811-1823. |
| [10] | YU Fajiang, WANG Chaozhou. Implementation Mechanism for TrustZone Paravirtualization and Containerization [J]. Netinfo Security, 2025, 25(10): 1523-1536. |
| [11] | SUN Yu, XIONG Gaojian, LIU Xiao, LI Yan. A Survey on Trusted Execution Environment Based Secure Inference [J]. Netinfo Security, 2024, 24(12): 1799-1818. |
| [12] | TANG Yu, ZHANG Chi. A Privacy Protection Scheme for Information-Centric Networking Based on Intel SGX [J]. Netinfo Security, 2023, 23(6): 55-65. |
| [13] | XIA Yihang, ZHANG Zhilong, WANG Muzi, CHEN Libo. Dependency-Based Vulnerability Detection Method in Container Supply Chain [J]. Netinfo Security, 2023, 23(2): 76-84. |
| [14] | WU Shenglin, LIU Wanggen, YAN Ming, WU Jie. A Real-Time Anomaly Detection System for Container Clouds Based on Unsupervised System Call Rule Generation [J]. Netinfo Security, 2023, 23(12): 91-102. |
| [15] | KELEKET GOMA Christy Junior Yannick, YI Wenzhe, WANG Juan. A Lightweight Trusted Execution Environment Construction Method for Fabric Chaincode Based on SGX [J]. Netinfo Security, 2022, 22(7): 73-83. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||