| [1] |
MITRE Corporation. CVE Details Vulnerability Statistics[EB/OL]. (2024-03-22)[2025-05-17]. https://www.cvedetails.com/product/497/Adobe-Acrobat-Reader.html?vendor_id=53.
|
| [2] |
YU Min, JIANG Jianguo, LI Gang, et al. A Survey of Research on Malicious Document Detection[J]. Journal of Cyber Security, 2021, 6(3): 54-76.
|
|
喻民, 姜建国, 李罡, 等. 恶意文档检测研究综述[J]. 信息安全学报, 2021, 6(3): 54-76.
|
| [3] |
GOPINATH M, SETHURAMAN S C. A Comprehensive Survey on Deep Learning Based Malware Detection Techniques[EB/OL]. (2022-12-21)[2025-05-17]. https://www.sciencedirect.com/science/article/abs/pii/S1574013722000636.
|
| [4] |
SRNDIC N, LASKOV P. Detection of Malicious PDF Files Based on Hierarchical Document Structure[C]// ISOC. The 20th Annual Network & Distributed System Security Symposium. San Jose: Citeseer, 2013: 1-16.
|
| [5] |
LU Xiaofeng, WANG Fei, JIANG Cheng, et al. A Universal Malicious Documents Static Detection Framework Based on Feature Generalization[EB/OL]. (2021-12-20)[2025-05-17]. https://www.mdpi.com/2076-3417/11/24/12134.
|
| [6] |
FALAH A, PAN Lei, HUDA S, et al. Improving Malicious PDF Classifier with Feature Engineering: A Data-Driven Approach[J]. Future Generation Computer Systems, 2021, 115: 314-326.
doi: 10.1016/j.future.2020.09.015
URL
|
| [7] |
ISSAKHANI M, VICTOR P, TEKEOGLU A, et al. PDF Malware Detection Based on Stacking Learning[C]// Science and Technology Publications. The 8th International Conference on Information Systems Security and Privacy (ICISSP 2022). Heidelberg: Springer, 2022: 562-570.
|
| [8] |
AL-HAIJA Q A, ODEH A, QATTOUS H. PDF Malware Detection Based on Optimizable Decision Trees[EB/OL]. (2022-09-30)[2025-05-17]. https://www.mdpi.com/2079-9292/11/19/3142.
|
| [9] |
YERIMA S Y, BASHAR A. Explainable Ensemble Learning Based Detection of Evasive Malicious PDF Documents[EB/OL]. (2023-07-20)[2025-05-17]. https://www.mdpi.com/2079-9292/12/14/3148.
|
| [10] |
BABAAGBA K O, ADESANYA S O. A Study on the Effect of Feature Selection on Malware Analysis Using Machine Learning[C]// ACM. The 2019 8th International Conference on Educational and Information Technology. New York: ACM, 2019: 51-55.
|
| [11] |
YU Yuanzhe, WANG Jinshuang, ZOU Xia. A Malicious PDF Detection Method Based on Feature Agglomeration and Convolutional Neural Network[J]. Information Technology and Network Security, 2021, 40(8): 35-41.
|
|
俞远哲, 王金双, 邹霞. 基于特征集聚和卷积神经网络的恶意PDF文档检测方法[J]. 信息技术与网络安全, 2021, 40(8): 35-41.
|
| [12] |
JEONG Y S, WOO J, KANG A R. Malware Detection on Byte Streams of PDF Files Using Convolutional Neural Networks[EB/OL]. (2019-04-03)[2025-05-17]. https://onlinelibrary.wiley.com/doi/10.1155/2019/8485365.
|
| [13] |
TOGACAR M, ERGEN B. Processing 2D Barcode Data with Metaheuristic Based CNN Models and Detection of Malicious PDF Files[EB/OL]. (2024-05-09)[2025-05-17]. https://www.sciencedirect.com/science/article/abs/pii/S1568494-624004964.
|
| [14] |
JIANG Jianguo, WANG Chenhao, YU Min, et al. NFDD: A Dynamic Malicious Document Detection Method without Manual Feature Dictionary[EB/OL]. (2021-09-09)[2025-05-17]. https://link.springer.com/chapter/10.1007/978-3-030-86130-8_12.
|
| [15] |
LEI Jingwei, YI Peng, CHEN Xiang. PDF Document Detection Model Based on Graph Neural Network and Deep Learning[J]. Computer Engineering and Design. 2024, 45(2): 356-366.
|
|
雷靖玮, 伊鹏, 陈祥. 基于图神经网络与深度学习的PDF文档检测模型[J]. 计算机工程与设计, 2024, 45(2): 356-366.
|
| [16] |
WANG Wenbo, YI Peng, KOU Taotao, et al. GLDOC: Detection of Implicitly Malicious MS-Office Documents Using Graph Convolutional Networks[J]. Cybersecurity, 2024, 7(1): 48-62.
doi: 10.1186/s42400-024-00243-7
|
| [17] |
THAKUR P, KANSAL V, RISHIWAL V. Hybrid Deep Learning Approach Based on LSTM and CNN for Malware Detection[J]. Wireless Personal Communications, 2024, 136(3): 1879-1901.
doi: 10.1007/s11277-024-11366-y
|
| [18] |
MANIRIHO P, MAHMOOD A N, CHOWDHURY M J M. API-MalDetect: Automated Malware Detection Framework for Windows Based on API Calls and Deep Learning Techniques[EB/OL]. (2023-07-22)[2025-05-17]. https://www.sciencedirect.com/science/article/pii/S1084804523001236.
|
| [19] |
AFZAL S, ASIM M, JAVED A R, et al. URLdeepDetect: A Deep Learning Approach for Detecting Malicious URLs Using Semantic Vector Models[J]. Journal of Network and Systems Management, 2021, 29(3): 1-27.
doi: 10.1007/s10922-020-09571-8
|
| [20] |
JIHADO A A, GIRSANG A S. Hybrid Deep Learning Network Intrusion Detection System Based on Convolutional Neural Network and Bidirectional Long Short-Term Memory[J]. Journal of Advances in Information Technology, 2024, 15(2): 219-232.
doi: 10.12720/jait.15.2.219-232
URL
|
| [21] |
THEKKEKARA J P, YONGCHAREON S, LIESAPUTRA V. An Attention-Based CNN-BiLSTM Model for Depression Detection on Social Media Text[EB/OL]. (2024-03-22)[2025-05-17]. https://www.sciencedirect.com/science/article/pii/S0957417424007000.
|
| [22] |
YANG Xiuzhang, PENG Guojun, LUO Yuan, et al. OMRDetector: A Method for Detecting Obfuscated Malicious Requests Based on Deep Learning[J]. Chinese Journal of Computers, 2022, 45(10): 2167-2189.
|
|
杨秀璋, 彭国军, 罗元, 等. OMRDetector:一种基于深度学习的混淆恶意请求检测方法[J]. 计算机学报, 2022, 45(10): 2167-2189.
|
| [23] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block Attention Module[C]// Springer. The European Conference on Computer Vision(ECCV 2018). Heidelberg: Springer, 2018: 3-19.
|
| [24] |
CIC. PDF Dataset: CIC-Evasive-PDFMal2022[EB/OL]. (2022-02-10)[2025-05-17]. https://www.unb.ca/cic/datasets/PDFMal-2022.html.
|