Netinfo Security ›› 2025, Vol. 25 ›› Issue (11): 1673-1690.doi: 10.3969/j.issn.1671-1122.2025.11.003
Previous Articles Next Articles
GUAN Zhi1, HU Jianbin2, LI Yue2(
), CHEN Zhong2
Received:2025-07-31
Online:2025-11-10
Published:2025-12-02
CLC Number:
GUAN Zhi, HU Jianbin, LI Yue, CHEN Zhong. A Comprehensive Survey of Blockchain Technologies and Applications Based on Trusted Execution Environments[J]. Netinfo Security, 2025, 25(11): 1673-1690.
Add to citation manager EndNote|Ris|BibTeX
URL: http://netinfo-security.org/EN/10.3969/j.issn.1671-1122.2025.11.003
| [1] |
YUAN M J, HYNES N, LONG Ju. Confidential Ethereum Smart Contracts[J]. IT Professional, 2023, 24(6): 54-58.
doi: 10.1109/MITP.2022.3175690 URL |
| [2] | YIN Hang, ZHOU Shunfan, JIANG Jun. Phala Network: A Confidential Smart Contract Network Based on Polkadot[EB/OL]. (2019-09-25)[2025-07-19]. https://www.semanticscholar.org/paper/Phala-Network%3A-A-Con%EF%AC%81dential-Smart-Contract-Network-Yin-Zhou/edbaeb9ebecbf344f38d47b192cd4666851db1ae. |
| [3] | WOETZEL C. Secret Network: A Privacy-Preserving Secret Contract & Decentralized Application Platform[EB/OL]. (2016-01-25)[2025-07-29]. https://scrt.network/. |
| [4] | NEARAI. Building User-Owned AI[EB/OL]. (2024-09-21)[2025-07-29]. https://near.ai/. |
| [5] | ROSCHER S, BONISCH V, LEE J, et al. Integrating Solutions on IBM Z with Secure Service Container[J]. IBM Journal of Research and Development, 2018, 62(2): 3-11. |
| [6] | DHANRAJ V, CHWARLA H, MANILA D, et al. Adaptive and Efficient Dynamic Memory Management for Hardware Enclaves[EB/OL]. (2025-09-08)[2025-07-19]. https://dl.acm.org/doi/pdf/10.1145/3757347.3759137. |
| [7] | MISONO M, STAVRAKAKIS D, SANTOS N, et al. Confidential VMs Explained: An Empirical Analysis of AMD SEV-SNP and Intel TDX[J]. Measurement and Analysis of Computing Systems, 2024, 8(3): 1-42. |
| [8] | LEE J, WANG Yongqin, RAJAT R, et al. Characterization of GPU TEE Overheads in Distributed Data Parallel ML Training[EB/OL]. (2025-01-20)[2025-07-19]. https://arxiv.org/abs/2501.11771v3. |
| [9] | OTT S, ORTHEN B, WEIDINGER A, et al. MultiTEE: Distributing Trusted Execution Environments[C]// ACM. The 19th ACM ASIA Conference on Computer and Communications Security. New York: ACM, 2024: 1617-1629. |
| [10] | KOHLBRENNER D, SHINDE S, LEE D, et al. Building Open Trusted Execution Environments[J]. IEEE Security & Privacy, 2020, 18(5): 47-56. |
| [11] | LAN Ying, GAO Jianbo, LI Yue, et al. TrustCross: Enabling Confidential Interoperability across Blockchains Using Trusted Hardware[C]// ACM. The 4th International Conference on Blockchain Technology and Applications (ICBTA’21). New York: ACM, 2022: 17-23. |
| [12] | LEE D, ANTONIO J, KHAN H. Privacy-Preserving Decentralized AI with Confidential Computing[EB/OL]. (2024-12-18)[2025-07-19]. https://arxiv.org/pdf/2410.13752. |
| [13] | JAVAID U. Blockchain Based Secure Group Data Collaboration in Cloud with Differentially Private Synthetic Data and Trusted Execution Environment[C]// IEEE.2022 IEEE International Conference on Big Data. New York: IEEE, 2022: 3919-3927. |
| [14] |
KIM S, BERNINGER S, KOCHER M, et al. Cross-Company Data Sharing Using Distributed Analytics[J]. Systems, 2025, 13(6): 418-429.
doi: 10.3390/systems13060418 URL |
| [15] |
XIE Hui, ZHENG Jun, HE Teng, et al. TEBDS: A Trusted Execution Environment-and-Blockchain-Supported IoT Data Sharing System[J]. Future Generation Computer Systems, 2023, 140: 321-330.
doi: 10.1016/j.future.2022.10.016 URL |
| [16] | WANG Sixiang, HUO Dongdong, ZHANG Hailong, et al. SSIDB: Secure Sharing of IoT Data on Blockchain with CP-ABE and Trusted Environment Assistance[C]// IEEE.International Symposium on Parallel and Distributed Processing with Applications (ISPA). New York: IEEE, 2024: 2022-2029. |
| [17] | KIM S, YUN S, JANG J. Secure User-Friendly Blockchain Modular Wallet Design Using Android & OP-TEE[EB/OL]. (2025-07-22)[2025-07-19]. https://arxiv.org/pdf/2506.17988. |
| [18] | KOSHIBA A. Trusted Heterogeneous Disaggregated Architectures[C]// ACM.Asia-Pacific Workshop on Systems. New York: ACM, 2023: 72-79. |
| [19] |
WANG Lianhai, LIU Xiaoqian, SHAO Wei, et al. A Blockchain-Based Privacy-Preserving Healthcare Data Sharing Scheme for Incremental Updates[J]. Symmetry, 2024, 16(1): 89-97.
doi: 10.3390/sym16010089 URL |
| [20] | XIAO Yang, ZHANG Ning, LI Jin, et al. PrivacyGuard: Enforcing Private Data Usage Control with Blockchain and Attested Off-Chain Contract Execution[EB/OL]. (2019-04-15)[2025-06-19]. https://arxiv.org/abs/1904.07275. |
| [21] | YAN Ying, WEI Changzheng, GUO Xuepeng, et al. Confidentiality Support over Financial Grade Consortium Blockchain[C]// ACM.The 2020 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2020: 2227-2240. |
| [22] | HEISS J, BUSSE A, TAI S. Trustworthy Pre-Processing of Sensor Data in Data On-Chaining Workflows for Blockchain-Based IoT Applications[C]// Springer. Service-Oriented Computing-ICSOC 2021:Lecture Notes in Computer Science, Heidelberg:Springer, 2021: 133-149. |
| [23] |
WEN Xiaoqing, FENG Quanbi, LYU Hanzheng, et al. TeeRollup: Efficient Rollup Design Using Heterogeneous TEE[J]. IEEE Transactions on Computers, 2025, 74(10): 3546-3558.
doi: 10.1109/TC.2025.3596698 URL |
| [24] | XIAN Youquan, ZHOU Lianghaojie, JIANG Jianyong, et al. A Distributed Efficient Blockchain Oracle Scheme for Internet of Things[J]. IEICE Transactions on Communications, 2024, 107(9): 573-582. |
| [25] | PENNEKAMP J, ALDER F, MATZUTT R, et al. Secure End-to-End Sensing in Supply Chains[C]// IEEE.2020 IEEE Conference on Communications and Network Security. New York: IEEE, 2020: 1-6. |
| [26] | LIND J, NAOR O, EYAL I, et al. Teechain: A Secure Payment Network with Asynchronous Blockchain Access[C]// ACM.The 27th ACM Symposium on Operating Systems Principles. New York: ACM, 2019: 63-79. |
| [27] |
WANG Qinghao. SorTEE: Service-Oriented Routing for Payment Channel Networks with Scalability and Privacy Protection[J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 3764-3780.
doi: 10.1109/TNSM.2022.3213559 URL |
| [28] | LIND J, EYAL I, PIETZUCH P, et al. Teechan: Payment Channels Using Trusted Execution Environments[EB/OL]. (2016-12-22)[2025-06-19]. https://arxiv.org/abs/1612.07766. |
| [29] | LI Peng, LUO Xiaofei, MIYAZAKI T, et al. Privacy-Preserving Payment Channel Networks Using Trusted Execution Environment[C]// IEEE.2020 IEEE International Conference on Communications. New York: IEEE, 2020: 1-6. |
| [30] | LEE J, KIM S, PARK S, et al. RouTEE: Secure, Scalable, and Efficient Off-Chain Payments Using Trusted Execution Environments[EB/OL]. (2025-03-18)[2025-06-19]. https://ieeexplore.ieee.org/document/10917388. |
| [31] |
XIE Yankai, LI Ruian, HUANG Yan, et al. A Monitoring-Free Bitcoin Payment Channel Scheme With Support for Real-Time Settlement[J]. IEEE Transactions on Services Computing, 2024, 17(5): 1924-1937.
doi: 10.1109/TSC.2024.3390396 URL |
| [32] | GRUNDMANN M, LEINWEBER M, HARTENSTEIN H. Banklaves: Concept for a Trustworthy Decentralized Payment Service for Bitcoin[EB/OL]. (2019-07-01)[2025-06-19]. https://ieeexplore.ieee.org/document/8751394. |
| [33] | TRAN M, LUU L, KANG M S, et al. Obscuro: A Bitcoin Mixer Using Trusted Execution Environments[EB/OL]. (2018-12-31)[2025-06-19]. https://eprint.iacr.org/2017/974.pdf. |
| [34] | XIE Yankai, WANG Qingtao, LI Songwei, et al. Secure and Efficient Decentralized Bitcoin Mixing Scheme Using Trusted Execution Environment[C]// IEEE.2022 IEEE International Conference on Communications. New York: IEEE, 2022: 4390-4395. |
| [35] | YANG Xiao, WU Libing, ZHANG Zhuangzhuang, et al. Survey on Blockchain-Based Integrity Validating for Cloud Data[J]. Journal of Chinese Computer Systems. 2023, 44(11): 2369-2376. |
| 杨潇, 吴黎兵, 张壮壮, 等. 基于区块链的云数据完整性验证研究综述[J]. 小型微型计算机系统. 2023, 44(11): 2369-2376. | |
| [36] |
YUAN Rui, XIA Yubin, CHEN Haibo, et al. ShadowEth: Private Smart Contract on Public Blockchain[J]. Journal of Computer Science and Technology, 2018, 33: 542-556.
doi: 10.1007/s11390-018-1839-y |
| [37] | CHENG R, ZHANG Fan, KOS J, et al. Ekiden: A Platform for Confidentiality-Preserving, Trustworthy, and Performant Smart Contracts[EB/OL]. (2019-07-17)[2025-06-19]. https://ieeexplore.org/document/8806762. |
| [38] | FRASSETTO T, JAUERNIG P, KOISSER D, et al. POSE: Practical Off-Chain Smart Contract Execution[EB/OL]. (2022-12-13)[2025-06-19]. https://arxiv.org/abs/2210.07110. |
| [39] |
LI Zecheng, XIAO Bin, GUO Songtao, et al. Securing Deployed Smart Contracts and DeFi With Distributed TEE Cluster[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(3): 828-842.
doi: 10.1109/TPDS.2022.3232548 URL |
| [40] | DAS P, ECKEY L, FRASSETTO T, et al. FastKitten: Practical Smart Contracts on Bitcoin[EB/OL]. (2019-08-16)[2025-06-19]. https://eprint.iacr.org/2019/154.pdf. |
| [41] | GADDAM S, KUMARESAN R, RAGHURAMAN S, et al. LucidiTEE: Scalable Policy-Based Multiparty Computation with Fairness[C]// Springer.Cryptology and Network Security. Heidelberg: Springer, 2023: 343-367. |
| [42] | XU Cheng, ZHANG Ce, XU Jianliang, et al. SlimChain: Scaling Blockchain Transactions through Off-Chain Storage and Parallel Processing[J]. VLDB Endowment, 2021, 14(11): 2314-2326. |
| [43] | WUST K, DIANA L, KOSTIAINEN K, et al. Bitcontracts: Supporting Smart Contracts in Legacy Blockchains[EB/OL]. (2019-01-25)[2025-06-19]. https://eprint.iacr.org/2019/857. |
| [44] | WUST K, MATETIC S, EGLI S, et al. ACE: Asynchronous and Concurrent Execution of Complex Smart Contracts[C]// ACM. The 2020 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2020: 587-600. |
| [45] | REN Qian, LIU Han, LI Yue, et al. Cloak: A Framework for Development of Confidential Blockchain Smart Contracts[EB/OL]. (2021-12-04)[2025-06-19]. https://ieeexplore.ieee.org/document/9546461. |
| [46] |
REN Qian, LI Yue, WU Yingjun, et al. DeCloak: Enable Secure and Cheap Multi-Party Transactions on Legacy Blockchains by a Minimally Trusted TEE Network[J]. IEEE Transactions on Information Forensics and Security, 2023, 19: 88-103.
doi: 10.1109/TIFS.2023.3318935 URL |
| [47] | MATETIC S, WUST K, SCHNEIDER M, et al. BITE: Bitcoin Lightweight Client Privacy Using Trusted Execution[C]// USENIX.28th USENIX Security Symposium. Berkeley: USENIX, 2019: 783-800. |
| [48] | WUST K, MATETIC S, SCHNEIDER M, et al. ZLiTE: Lightweight Clients for Shielded Zcash Transactions Using Trusted Execution[EB/OL]. (2018-11-19)[2025-06-19]. https://eprint.iacr.org/2018/1024. |
| [49] | LI Suozai, HUANG Ming, WANG Qinghao, et al. T-PPA: A Privacy-Preserving Decentralized Payment System with Efficient Auditability Based on TEE[C]// IEEE. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). New York: IEEE, 2022: 1255-1263. |
| [50] | JEAN-LOUIS N, LI Yunqi, JI Yan, et al. SGXonerated: Finding (and Partially Fixing) Privacy Flaws in TEE-Based Smart Contract Platforms Without Breaking the TEE[EB/OL]. (2023-11-09)[2025-06-19]. https://eprint.iacr.org/2023/378.pdf. |
| [51] | FENG Liaoliao, DING Yan, TAN Yusong, et al. Trusted-Committee-Based Secure and Scalable BFT Consensus for Consortium Blockchain[C]// IEEE.2022 the 18th International Conference on Mobility, Sensing and Networking. New York: IEEE, 2022: 363-370. |
| [52] |
LIU Jian, LI Wenting, KARAME G O, et al. Scalable Byzantine Consensus via Hardware-Assisted Secret Sharing[J]. IEEE Transactions on Computers, 2018, 68(1): 139-151.
doi: 10.1109/TC.2018.2860009 URL |
| [53] |
WANG Ran, MA Fuqiang, TANG Sisui, et al. Parallel Byzantine Fault Tolerance Consensus Based on Trusted Execution Environments[J]. Peer-to-Peer Networking and Applications, 2025, 18(1): 31-42.
doi: 10.1007/s12083-024-01830-8 |
| [54] | NIU Jianyu, WEN Xiaoqing, WU Guanlong, et al. Achilles: Efficient TEE-Assisted BFT Consensus via Rollback Resilient Recovery[C]// ACM. The European Conference on Computer Systems. New York: ACM, 2025: 193-210. |
| [55] | ZHANG Jiashuo, GAO Jianbo, WANG Ke, et al. TBFT: Efficient Byzantine Fault Tolerance Using Trusted Execution Environment[C]// IEEE.IEEE International Conference on Communications. New York: IEEE, 2022: 1004-1009. |
| [56] | XIE Shaokang, KANG Dakai, LYU Hanzheng, et al. Fides: Scalable Censorship-Resistant DAG Consensus via Trusted Components[EB/OL]. (2025-01-02)[2025-06-19]. https://arxiv.org/abs/2501.01062. |
| [57] | FU Xiang, WANG Huaimin, SHI Peichang, et al. Teegraph: A Blockchain Consensus Algorithm Based on TEE and DAG for Data Sharing in IoT[J]. Journal of Systems Architecture, 2022, 122(1): 344-352. |
| [58] | LIU Lifeng, LI Jian, YUAN T T. TEE-Based Mutual Proofs of Transmission Services in Decentralized Systems[C]// IEEE. INFOCOM 2020-IEEE Conference on Computer Communications Workshops. New York: IEEE, 2020: 754-759. |
| [59] | YANG Wenzhe, HAO Yuanke, ZHAO Changsheng, et al. Data Sharing Trusted Data Lake Platform Based on Object Deputy[J]. Journal of Chinese Computer Systems, 2023, 44(6):1324-1328. |
| 杨文哲, 郝渊科, 赵常胜, 等. 基于对象代理的大数据共享可信数据湖平台[J]. 小型微型计算机系统, 2023, 44(6):1324-1328. | |
| [60] | MILUTINOVIC M, HE W, WU H, et al. Proof of Luck: An Efficient Blockchain Consensus Protocol[C]// ACM. The 1st Workshop on System Software for Trusted Execution. New York: ACM, 2016: 1-6. |
| [61] | LEINWEBER M, HARTENSTEIN H. Not EXactly Byzantine: Efficient and Resilient TEE-Based State Machine Replication[EB/OL]. (2025-01-19)[2025-06-19]. https://arxiv.org/abs/2501.11051. |
| [62] | BRANDENBURGER M, CACHIN C, KAPITZA R, et al. Trusted Computing Meets Blockchain: Rollback Attacks and a Solution for Hyperledger Fabric[C]// IEEE.The 38th Symposium on Reliable Distributed Systems. New York: IEEE, 2019: 324-332. |
| [63] | LEW C C, TORRES C F, SHINDE S, et al. Revisiting Rollbacks on Smart Contracts in TEE-Protected Private Blockchains[C]// IEEE.2024 IEEE European Symposium on Security and Privacy Workshops. New York: IEEE, 2024: 217-224. |
| [64] |
LU Xin, ZHANG Zijian, MA Teng, et al. Trusted Execution Environment with Rollback Protection for Smart Contract-Based IoT Data Trading[J]. IEEE Internet of Things Journal, 2024, 11(20): 32901-32909.
doi: 10.1109/JIOT.2024.3422005 URL |
| [65] |
YIN Zeyuan, ZHANG Bingsheng, XU Jingzhong, et al. Bool Network: An Open, Distributed, Secure Cross-Chain Notary Platform[J]. IEEE Transactions on Information Forensics and Security, 2022, 17: 3465-3478.
doi: 10.1109/TIFS.2022.3209546 URL |
| [66] | WEN Xiaoqing, FENG Quanbi, NIU Jianyu, et al. MECURY: Practical Cross-Chain Exchange via Trusted Hardware[EB/OL]. (2024-09-23)[2025-06-19]. https://arxiv.org/abs/2409.14640. |
| [67] | WANG Yichuan, TIE Jianhuan, HEI Xinhong, et al. A Trusted Privacy-Preserving Model for Cross-Chain Transactions Based on Zk-SNARKs[C]// IEEE.2023 International Conference on Networking and Network Applications. New York: IEEE, 2023: 187-192. |
| [68] | WANG Gang, NIXON M. InterTrust: Towards an Efficient Blockchain Interoperability Architecture with Trusted Services[C]// IEEE. 2021 IEEE International Conference on Blockchain. New York: IEEE, 2021: 150-159. |
| [69] | LI Ming, WENG Jian, WENG Jiasi, et al. IvyCross: A Privacy-Preserving and Concurrency Control Framework for Blockchain Interoperability[EB/OL]. (2023-03-03)[2025-06-19]. https://ieeexplore.ieee.org/document/10971953. |
| [70] |
ZHANG Jianting, CHEN Wuhui, HONG Zicong, et al. Efficient Execution of Arbitrarily Complex Cross-Shard Contracts for Blockchain Sharding[J]. IEEE Transactions on Computers, 2024, 73(5): 1190-1205.
doi: 10.1109/TC.2024.3365929 URL |
| [71] | ZENG Ping, ZHANG Liwen, ZHAO Geng, et al. TEE-Based Oracle Cross-Chain Data Secure Transmission Protocol[J]. Computer Simulation, 2024, 41(6): 486-492. |
| 曾萍, 张沥文, 赵耿, 等. 基于TEE预言机的区块跨链数据安全传输协议[J]. 计算机仿真, 2024, 41(6): 486-492. | |
| [72] | HUANG Junqin, KONG Linghe, CHENG Guanjie, et al. Advancing Web 3.0: Making Smart Contracts Smarter on Blockchain[EB/OL]. (2024-05-13)[2025-06-19]. https://dl.acm.org/doi/10.1145/3589334.3645319. |
| [73] | NEARAI. Private and Verifiable AI[EB/OL]. (2025-06-29)[2025-07-29]. https://dl.acm.org/doi/10.1145/3589334.3645319. |
| [74] |
KALAPAAKING A P, KHALIL I, RAHMAN M S, et al. Blockchain-Based Federated Learning with Secure Aggregation in Trusted Execution Environment for Internet-of-Things[J]. IEEE Transactions on Industrial Informatics, 2022, 19(2): 1703-1714.
doi: 10.1109/TII.2022.3170348 URL |
| [75] | WANG Hao, CAI Yichen, WANG Jun, et al. Voltran: Unlocking Trust and Confidentiality in Decentralized Federated Learning Aggregation[EB/OL]. (2024-03-29)[2025-06-19]. https://ieeexplore.ieee.org/document/10703116. |
| [76] |
WANG Ran, XU Cheng, ZHANG Shuhao, et al. Swarm Transfer Learning Driven Materials Computation for Secure Big Data Sharing[J]. Nature Communications, 2024, 15(1): 9290-9298.
doi: 10.1038/s41467-024-53431-x |
| [77] |
LIU Bingyu, XIE Shangyu, YANG Yuanzhou, et al. Privacy Preserving Divisible Double Auction with a Hybridized TEE-Blockchain System[J]. Cybersecurity, 2021, 4: 1-14.
doi: 10.1186/s42400-020-00065-3 |
| [78] |
SHARADQH A A M, HATAMLEH H A M, ALNASER A M A, et al. Hybrid Chain: Blockchain Enabled Framework for Bi-Level Intrusion Detection and Graph-Based Mitigation for Security Provisioning in Edge Assisted IoT Environment[J]. IEEE Access, 2023, 11: 27433-27449.
doi: 10.1109/ACCESS.2023.3256277 URL |
| [79] | YULIANTO S, WARNARS H L H S, PRABOWO H, et al. Security Risks and Best Practices for Blockchain and Smart Contracts: A Systematic Literature Review[C]// IEEE.2023 International Conference on Information Management and Technology (ICIMTech). New York: IEEE, 2023: 1-6. |
| [80] | SENDNER C, PETZI L, STANG J, et al. Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study[EB/OL]. (2025-03-03)[2025-06-19]. https://doi.org/10.48550/ARXIV.2312.16533. |
| [81] | JOY A, SOH B, ZHANG Zhi, et al. Physical and Software Based Fault Injection Attacks Against TEEs in Mobile Devices: A Systemisation of Knowledge[EB/OL]. (2024-11-22)[2025-06-19]. https://arxiv.org/abs/2411.14878. |
| [82] | AUGUSTO A, BELCHIOR R, CORREIA M, et al. SoK: Security and Privacy of Blockchain Interoperability[C]// IEEE.2024 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2024: 3840-3865. |
| [83] | LIU Zekai, LI Xiaoqi. SoK: Security Analysis of Blockchain-Based Cryptocurrency[EB/OL]. (2025-04-30)[2025-06-19]. https://www.computer.org/csdl/proceedings-article/sp/2024/313000a234/1WPcYVyZLWw. |
| [84] |
CAI Yize. Assessing and Neutralizing Multi-Tiered Security Threats in Blockchain Systems[J]. Applied and Computational Engineering, 2024, 49: 65-74.
doi: 10.54254/2755-2721/49/20241063 URL |
| [85] | SURAWEERA S. IoT Security: A Comprehensive Review of Challenges, Solutions and Future Directions[EB/OL]. (2025-02-07)[2025-06-19]. https://www.techrxiv.org/inst/26407. |
| [86] | COSTAN V, DEVADAS S. Intel SGX Explained[EB/OL]. (2017-02-21)[2025-06-19]. http://eprint.iacr.org/2016/086. |
| [1] | YANG Jianxin, WANG Xiaoding, LIN Hui. Improved Consensus Algorithm Based on HotStuff and Multi-Ary Trees [J]. Netinfo Security, 2025, 25(9): 1447-1455. |
| [2] | SHE Wei, MA Tianxiang, FENG Haige, LIU Wei. Tracing-Free Blockchain Covert Communication Method Based on RBF Mechanism [J]. Netinfo Security, 2025, 25(8): 1302-1312. |
| [3] | LIU Feng, HUANG Hao. A Decentralized Regulatory Architecture Based on Smart Contracts and Prophecy Machines with Active Sensor Networks [J]. Netinfo Security, 2025, 25(6): 898-909. |
| [4] | YE Jiajun, GAO Cuifeng, XUE Yinxing. Research on Price Oracle Manipulation Source Code Detection Method Based on Static Analysis [J]. Netinfo Security, 2025, 25(5): 732-746. |
| [5] | QIN Jinlei, KANG Yimin, LI Zheng. Lightweight Fine-Grained Multi-Dimensional Multi-Subset Privacy-Preserving Data Aggregation for Smart Grid [J]. Netinfo Security, 2025, 25(5): 747-757. |
| [6] | ZHU Xiaoqiang, ZHANG Haowen, LIN Yanzi, LIU Jiqiang. Lightweight Distributed Authentication Scheme Based on Trusted Digital Identity [J]. Netinfo Security, 2025, 25(5): 817-827. |
| [7] | YANG Yatao, DING Yucheng, LIU Peihe, SANG Peng. Research on Blockchain-Based Privacy Preservation and Digital Authentication [J]. Netinfo Security, 2025, 25(4): 640-653. |
| [8] | ZHANG Yuxuan, HUANG Cheng, LIU Rong, LENG Tao. Smart Contract Vulnerability Detection Method Combining Prompt Tuning [J]. Netinfo Security, 2025, 25(4): 664-673. |
| [9] | SHEN Haoting, PENG Zhigang, LIU Yuxuan, WANG Yafei. Hardware Authentication Mechanism for Consortium Blockchain Based on Differentiated Physical Unclonable Function Models [J]. Netinfo Security, 2025, 25(11): 1732-1744. |
| [10] | WANG Yong, WU Yifan, WAN Qiancheng. Research on Redactable Blockchain Scheme Based on the Chinese Remainder Theorem [J]. Netinfo Security, 2025, 25(1): 36-47. |
| [11] | YU Lisu, LI Biao, YAO Yuanzhi, WEN Jiajin, LI Zipeng, WANG Zhen. Performance Optimization of Blockchain-Assisted Unmanned Aerial Vehicle Mobile Edge Computing System [J]. Netinfo Security, 2024, 24(9): 1432-1443. |
| [12] | LYU Qiuyun, ZHOU Lingfei, REN Yizhi, ZHOU Shifei, SHENG Chunjie. A Lifecycle-Manageable Public Data Sharing Scheme [J]. Netinfo Security, 2024, 24(8): 1291-1305. |
| [13] | ZHANG Jiwei, WANG Wenjun, NIU Shaozhang, GUO Xiangkuo. Blockchain Scaling Solutions: ZK-Rollup Review [J]. Netinfo Security, 2024, 24(7): 1027-1037. |
| [14] | GUO Rui, YANG Xin, WANG Junming. Verifiable and Revocable Attribute Encryption Scheme Based on Blockchain [J]. Netinfo Security, 2024, 24(6): 863-878. |
| [15] | LING Zhi, YANG Ming, YU Jiangyin. Research on Power Security Trading Platform Based on IPFS and Blockchain Technology [J]. Netinfo Security, 2024, 24(6): 968-976. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||