信息网络安全 ›› 2025, Vol. 25 ›› Issue (11): 1658-1672.doi: 10.3969/j.issn.1671-1122.2025.11.002

• 专题论文:机密计算 • 上一篇    下一篇

异构CPU-GPU系统机密计算综述

郝萌1, 李佳勇1(), 杨洪伟1, 张伟哲1,2,3   

  1. 1.哈尔滨工业大学网络空间安全学院哈尔滨 150001
    2.哈尔滨工业大学(深圳)计算机科学与技术学院深圳 518055
    3.鹏城实验室深圳 518055
  • 收稿日期:2025-07-20 出版日期:2025-11-10 发布日期:2025-12-02
  • 通讯作者: 李佳勇 li18145606780@163.com
  • 作者简介:郝萌(1991—),男,山东,副教授,博士,CCF会员,主要研究方向为高性能计算、并行应用性能优化|李佳勇(2001—),男,江西,硕士研究生,主要研究方向为高性能计算|杨洪伟(1987—),男,黑龙江,助理研究员,博士,CCF会员,主要研究方向为数据挖掘、隐私计算、网络空间安全|张伟哲(1976—),男,黑龙江,教授,博士,CCF会员,主要研究方向为网络空间安全、数据安全、高性能计算
  • 基金资助:
    国家自然科学基金(U22A2036);国家重点研发计划(2023YFB4503205)

Heterogeneous CPU-GPU System Confidential Computing Survey

HAO Meng1, LI Jiayong1(), YANG Hongwei1, ZHANG Weizhe1,2,3   

  1. 1. School of Cyberspace Science, Harbin Institute of Technology, Harbin 150001, China
    2. School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
    3. Peng Cheng Laboratory, Shenzhen 518055, China
  • Received:2025-07-20 Online:2025-11-10 Published:2025-12-02

摘要:

随着人工智能等数据密集型应用的普及,以CPU与GPU为核心的异构计算系统已成为关键基础设施。然而,在云和边缘等非可信环境中,敏感数据在处理阶段面临着严峻的安全威胁,传统加密方法对此无能为力。机密计算利用硬件可信执行环境(TEE)为保护使用中的数据提供了有效方案,但现有技术主要集中在CPU端。将TEE安全边界无缝扩展至计算引擎核心GPU,已成为当前学术界与工业界关注的焦点。文章对CPU-GPU异构系统中的机密计算技术进行系统性综述。首先,文章回顾了机密计算的基本概念并剖析了针对GPU的典型攻击向量。然后,对现有GPU机密计算方案进行分类,涵盖硬件辅助、软硬件协同及纯软件实现等技术范式。最后,文章总结了该领域面临的关键挑战,并展望了未来研究方向。

关键词: 机密计算, 可信执行环境, 异构计算, GPU

Abstract:

With the widespread adoption of data-intensive applications such as artificial intelligence, heterogeneous computing systems centered on CPU and GPU have become essential infrastructure. However, in untrusted environments such as cloud and edge computing, sensitive data face severe security threats during processing, which cannot be effectively mitigated by traditional encryption methods. Confidential computing, leveraging hardware-based trusted execution environments (TEE), provides an effective mechanism for protecting data in use. Nevertheless, existing technologies have primarily focused on CPU. Extending TEE security boundaries seamlessly to GPU, the core of modern computing engines, has therefore become a major focus of both academic and industrial research. This paper provided a comprehensive review of confidential computing technologies in CPU-GPU heterogeneous systems. It first revisited the fundamental concepts of confidential computing and analyzed representative attack vectors targeting GPU. Subsequently, existing GPU confidential computing solutions were categorized into three paradigms: hardware-assisted, hardware-software co-design, and software-based approaches. Finally, the key challenges in this domain were summarized, and potential directions for future research were discussed.

Key words: confidential computing, trusted execution environment, heterogeneous computing, GPU

中图分类号: