信息网络安全 ›› 2025, Vol. 25 ›› Issue (9): 1418-1438.doi: 10.3969/j.issn.1671-1122.2025.09.010

• 入选论文 • 上一篇    下一篇

面向个性化联邦学习的后门攻击与防御综述

陈先意1,2,3,4, 汪学波2,3, 崔琦1,2,3, 付章杰1,2,3, 王茜茜2,3, 曾一福5,6()   

  1. 1.南京信息工程大学数字取证教育部工程研究中心,南京 210044
    2.南京信息工程大学计算机学院,南京 210044
    3.南京信息工程大学网络空间安全学院,南京 210044
    4.江苏羽驰区块链科技研究院有限公司,南京 210000
    5.福建医科大学附属第二医院,泉州 362100
    6.广州大学网络空间安全学院,广州 510006
  • 收稿日期:2025-06-13 出版日期:2025-09-10 发布日期:2025-09-18
  • 通讯作者: 曾一福 zyf@fyey.cn
  • 作者简介:陈先意(1986—),男,湖北,副教授,博士,CCF会员,主要研究方向为人工智能安全、大数据安全|汪学波(2000—),男,浙江,硕士研究生,主要研究方向为联邦学习安全|崔琦(1994—),男,辽宁,副教授,博士,主要研究方向为信息隐藏、深度学习模型安全|付章杰(1983—),男,教授,博士,主要研究方向为人工智能安全、深度伪造取证和区块链安全|王茜茜(1999—),女,江苏,硕士研究生,主要研究方向为联邦学习安全|曾一福(1991—),男,福建,博士研究生,主要研究方向为联邦学习安全、医疗信息安全
  • 基金资助:
    国家重点研发计划(2021YFB2700900);国家自然科学基金(U22B2062);国家自然科学基金(62172232);江苏省杰出青年基金(BK20200039);江苏省研究生科研与实践创新计划(SJCX25_0521);南京市重大科技专项(202405002);泉州市科技计划(2021N038S)

Overview of Backdoor Attacks and Defenses in Personalized Federated Learning

CHEN Xianyi1,2,3,4, WANG Xuebo2,3, CUI Qi1,2,3, FU Zhangjie1,2,3, WANG Qianqian2,3, ZENG Yifu5,6()   

  1. 1. Engineering Research Center of Digital Forensics Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China
    2. School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
    3. School of Cyberspace Security, Nanjing University of Information Science and Technology, Nanjing 210044, China
    4. Jiangsu Yuchi Blockchain Technology Research Institute Co., Ltd., Nanjing 210000, China
    5. The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362100, China
    6. The School of Cyber Science and Technology, Guangzhou University, Guangzhou 510006, China
  • Received:2025-06-13 Online:2025-09-10 Published:2025-09-18

摘要:

个性化联邦学习(PFL)作为一种新兴的联邦学习范式,旨在为各客户端训练适应其本地数据特性的个性化模型,以有效应对数据异质性带来的挑战。然而,PFL的分布式特性与个性化需求使其易受后门攻击威胁,且数据异质性引发的模型漂移与个性化目标交织,显著加剧了攻击的隐蔽性与防御难度。因此,深入研究PFL环境下的后门攻击机理与防御对策至关重要。文章首先介绍PFL和后门攻击的研究背景与核心概念;然后,系统梳理与评析涵盖黑盒与白盒场景的PFL后门攻击策略及作用于各阶段的防御机制,并剖析了其适用性与局限;最后,探讨PFL后门攻击与防御面临的关键挑战与未来研究方向。

关键词: 个性化联邦学习, 后门攻击, 后门防御

Abstract:

As an emerging paradigm in federated learning, personalized federated learning (PFL) aims to furnish each client with personalized models specifically tailored to their unique data distributions, in order to effectively mitigate the adverse impacts of data heterogeneity. However, the distributed nature and personalization requirements of PFL render it susceptible to backdoor attack threats. Furthermore, model drift arising from data heterogeneity, intertwined with the personalization objective, significantly exacerbates the stealthiness of attacks and the difficulty of defense. Therefore, in-depth research into backdoor attack mechanisms and defense strategies within the PFL environment is crucial. Firstly, the research background and core concepts of PFL and backdoor attacks were introduced. Then, PFL backdoor attack strategies encompassing black-box and white-box scenarios, along with defense mechanisms operating at various stages, were systematically reviewed and critically analyzed, while also dissecting their respective applicability and limitations. Finally, key challenges and future research directions faced by PFL backdoor attacks and defenses were discussed.

Key words: personalized federated learning, backdoor attack, backdoor defense

中图分类号: