信息网络安全 ›› 2025, Vol. 25 ›› Issue (9): 1338-1347.doi: 10.3969/j.issn.1671-1122.2025.09.002

• 优秀论文 • 上一篇    下一篇

基于大模型的少样本APT攻击事件抽取方法

曹骏1, 向尕1,2(), 任亚唯1, 谭自程1, 杨群生1   

  1. 1.北京信息科技大学计算机学院,北京 102206
    2.北京信息科技大学智能信息处理研究所,北京 102206
  • 收稿日期:2025-06-08 出版日期:2025-09-10 发布日期:2025-09-18
  • 通讯作者: 向尕 xiangga@bistu.edu.cn
  • 作者简介:曹骏(2000—),男,山东,硕士研究生,主要研究方向为信息安全、自然语言处理|向尕(1975—),女,湖南,副教授,博士,CCF高级会员,主要研究方向为信息安全、自然语言处理和人工智能|任亚唯(1978—),女,湖北,副教授,博士,主要研究方向为密码学与网络安全、人工智能安全|谭自程(2001—),男,四川,硕士研究生,主要研究方向为信息安全、自然语言处理|杨群生(2004—),男,河南,本科,主要研究方向为信息安全、自然语言处理
  • 基金资助:
    国家自然科学基金(62176023);北京市教育委员会科研计划(KM202311232014);北京信息科技大学星光基金(XG2025ZD20)

Small-Sample APT Attack Event Extraction Method Based on Large Model

CAO Jun1, XIANG Ga1,2(), REN Yawei1, TAN Zicheng1, YANG Qunsheng1   

  1. 1. College of Computer Science, Beijing Information Science and Technology University, Beijing 102206, China
    2. Intelligent Information Processing Institute, Beijing Information Science and Technology University, Beijing 102206, China
  • Received:2025-06-08 Online:2025-09-10 Published:2025-09-18

摘要:

APT攻击的检测和防御较为困难,从威胁情报中自动抽取APT攻击事件及关键信息,对于提高主动防御能力、构建高质量威胁情报具有重要意义。然而,APT相关的威胁情报涉及多个攻击阶段和复杂的技术手段,抽取模型的训练面临高质量数据集稀缺、数据样本规模较小的问题,抽取模型的精度有待提高。文章提出一种基于大模型的少样本APT攻击事件抽取方法。首先,设计基于大模型的攻击事件数据增强方法,创建中文APT攻击事件数据集APTCNEE;然后,构建一种基于提示学习的ERNIE-BiLSTM-CRF模型。实验验证了该方法的有效性,F1值超越基线模型,通过数据增强方法进一步提升了触发词识别和论元抽取性能。

关键词: 大模型, 威胁情报, 事件抽取, APT攻击, 数据增强

Abstract:

The detection and defense of APT attacks are relatively difficult. Automatically extracting APT attack events and key information from threat intelligence is of great significance for improving proactive defense capabilities and building high-quality threat intelligence. This capability enhances proactive defense strategies and supports the development of high-quality threat intelligence. However, threat intelligence related to APT often spans multiple attack stages and involves complex techniques with intricate semantics. Training accurate extraction models is hindered by the scarcity of high-quality datasets and limited sample sizes. This paper proposed a small-sample APT attack event extraction method based on large model. First, this method designed a data augmentation method for attack events based on large models. Using this method, the APTCNEE dataset and a Chinese corpus of APT attack events were created. Then, an ERNIE-BiLSTM-CRF model based on prompt learning was constructed. The experiment verifies the effectiveness of the method, with the F1 score higher than the baseline models, and data augmentation significantly boosts the performance of both trigger word and argument extraction.

Key words: large model, threat intelligence, event extraction, APT attack, data augmentation

中图分类号: