信息网络安全 ›› 2025, Vol. 25 ›› Issue (8): 1263-1275.doi: 10.3969/j.issn.1671-1122.2025.08.008
孙南1,2, 秦中元1,3(
), 胡爱群1,3, 李涛1,3
收稿日期:2024-06-20
出版日期:2025-08-10
发布日期:2025-09-09
通讯作者:
秦中元
E-mail:zyqin@seu.edu.cn
作者简介:孙南(1992—),男,江苏,讲师,硕士,主要研究方向为信息与通信|秦中元(1974—),男,江苏,副教授,博士,CCF会员,主要研究方向为网络与信息安全|胡爱群(1966—),男,江苏,教授,博士,CCF会员,主要研究方向为信息系统安全、物理层安全|李涛(1984—),男,江苏,副教授,博士,CCF会员,主要研究方向为信息系统安全、内生安全
基金资助:
SUN Nan1,2, QIN Zhongyuan1,3(
), HU Aiqun1,3, LI Tao1,3
Received:2024-06-20
Online:2025-08-10
Published:2025-09-09
摘要:
针对传统入侵检测系统易导致系统性能瓶颈的突出问题,受高等生物免疫系统的启发,文章突破传统入侵检测系统外壳式防御的架构基础,设计了一种适用于可编程数据平面的仿生免疫入侵检测方法。该方法利用仿生固有免疫系统进行流量过滤,初步拦截部分入侵流量,对于仍然存疑的流量则启动仿生适应性免疫系统进行深度特征采集、识别与处理,实现了对入侵流量的高效检测。实验结果表明,该方法能够实现较高的检测准确率和较低的控制器负载。
中图分类号:
孙南, 秦中元, 胡爱群, 李涛. 基于仿生免疫的可编程数据平面入侵检测方法[J]. 信息网络安全, 2025, 25(8): 1263-1275.
SUN Nan, QIN Zhongyuan, HU Aiqun, LI Tao. Immune-Based Intrusion Detection Methods for Programmable Data Plane[J]. Netinfo Security, 2025, 25(8): 1263-1275.
| [1] | CHAMOU D, TOUPAS P, KETZAKI E, et al. Intrusion Detection System Based on Network Traffic Using Deep Neural Networks[C]// IEEE. 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks. New York: IEEE, 2019: 1-6. |
| [2] | KIM J, BENTLEY P J, AICKELIN U, et al. Immune System Approaches to Intrusion Detection-A Review[J]. Natural Computing, 2007, 6(4): 413-466. |
| [3] | LI Tao, HU Aiqun, FANG Lanting. Bionic Control Mechanism Based Research of Endogenous Immune Architecture for Information System[J]. Journal of Cyber Security, 2022, 7(2): 87-100. |
| [4] | GONG Feili. Medical Immunology[M]. Beijing: Science Press, 2012. |
| 龚非力. 医学免疫学[M]. 北京: 科学出版社, 2012. | |
| [5] | SONG C, PARK Y, GOLANI K, et al. Machine-Learning Based Threat-Aware System in Software Defined Networks[C]// IEEE. 2017 26th International Conference on Computer Communication and Networks (ICCCN). New York: IEEE, 2017: 1-9. |
| [6] | SANTOS D S A, WICKBOLDT J A, GRANVILLE L Z, et al. ATLANTIC:A Framework for Anomaly Traffic Detection, Classification, and Mitigation in SDN[C]// IEEE. NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium. New York: IEEE, 2016: 27-35. |
| [7] | CHEN Zhuo, JIANG Fu, CHENG Yijun, et al. XGBoost Classifier for DDoS Attack Detection and Analysis in SDN-Based Cloud[C]// IEEE. 2018 IEEE International Conference on Big Data and Smart Computing. New York: IEEE, 2018: 251-256. |
| [8] | SWAMI R, DAVE M, RANGA V. Voting-Based Intrusion Detection Framework for Securing Software-Defined Networks[J]. Concurrency and Computation: Practice and Experience, 2020, 32(24): 1-16. |
| [9] | ELSAYED R A, HAMADA R A, ABDALLA M I, et al. Securing IoT and SDN Systems Using Deep-Learning Based Automatic Intrusion Detection[EB/OL]. (2023-03-03)[2024-06-10]. https://doi.org/10.1016/j.asej.2023.102211. |
| [10] | AL R M, JAVEED D, KHAN M T, et al. Cyber Threats Detection in Smart Environments Using SDN-Enabled DNN-LSTM Hybrid Framework[J]. IEEE Access, 2022, 10: 53015-53026. |
| [11] | KRANTHI S, KANCHANA M, SUNEETHA M. A Study of IDS-Based Software-Defined Networking by Using Machine Learning Concept[EB/OL]. (2022-02-08)[2024-06-10]. https://doi.org/10.1007/978-981-16-5689-7_6. |
| [12] | HAIDER S, AKHUNZADA A, MUSTAFA I, et al. A Deep CNN Ensemble Framework for Efficient DDoS Attack Detection in Software Defined Networks[J]. IEEE Access, 2020, 8: 53972-53983. |
| [13] |
LI Jiaqi, ZHAO Zhifeng, LI Rongpeng, et al. AI-Based Two-Stage Intrusion Detection for Software Defined IoT Networks[J]. IEEE Internet of Things Journal, 2019, 6(2): 2093-2102.
doi: 10.1109/JIOT.2018.2883344 |
| [14] | BARRADAS D, SANTOS N, RODRIGUES L, et al. FlowLens: Enabling Efficient Flow Classification for ML-Based Network Security Applications[EB/OL]. (2021-02-21)[2024-06-10]. https://www.ndss-symposium.org/wp-content/uploads/ndss2021_7C-2_24067_paper.pdf. |
| [15] | XIONG Zhaoqi, ZILBERMAN N. Do Switches Dream of Machine Learning? Toward In-Network Classification[C]// ACM. The 18th ACM Workshop on Hot Topics in Networks. New York: ACM, 2019: 25-33. |
| [16] | XAVIER B M, GUIMARAES R S, COMARELA G, et al. Programmable Switches for In-Networking Classification[C]// IEEE. IEEE INFOCOM 2021-IEEE Conference on Computer Communications. New York: IEEE, 2021: 1-10. |
| [17] | LUO Junming, LIU Waixi, TAN Miaoquan, et al. Binary Neural Network with P4 on Programmable Data Plane[C]// IEEE. 2022 18th International Conference on Mobility, Sensing and Networking. New York: IEEE, 2022: 960-965. |
| [18] | ZHENG Changgang, XIONG Zhaoqi, BUI T T, et al. IIsy: Practical In-Network Classification[EB/OL]. (2022-06-19)[2024-06-10]. https://arxiv.org/abs/2205.08243. |
| [19] | Canadian Institute for Cybersecurity. CIC-IDS-2017 Dataset[EB/OL]. [2024-06-10]. https://www.unb.ca/cic/datasets/ids-2017.html. |
| [20] | XAVIER B M, SILVA G R, COMARELA G, et al. MAP4: A Pragmatic Framework for In-Network Machine Learning Traffic Classification[J]. IEEE Transactions on Network and Service Management, 2022, 19(4): 4176-4188. |
| [21] | LI Yu. Research on Internet Intrusion Detection Technology Based on Deep Learning[D]. Chengdu: University of Electronic Science and Technology of China, 2023. |
| 李宇. 基于深度学习的互联网入侵检测技术研究[D]. 成都: 电子科技大学, 2023. | |
| [22] | LOPEZ-MARTIN M, CARRO B, SANCHEZ-ESGUEVILLAS A. Application of Deep Reinforcement Learning to Intrusion Detection for Supervised Problems[EB/OL]. (2019-09-18)[2024-06-10]. https://doi.org/10.1016/j.eswa.2019.112963. |
| [23] | ELSAYED M S, LE-KHAC N A, JURCUT A D. InSDN: A Novel SDN Intrusion Dataset[J]. IEEE Access, 2020, 8: 165263-165284. |
| [24] | XU Yuhua, SUN Zhixin. Research Development of Abnormal Traffic Detection in Software Defined Networking[J]. Journal of Software, 2020, 31(1): 183-207. |
| 徐玉华, 孙知信. 软件定义网络中的异常流量检测研究进展[J]. 软件学报, 2020, 31(1): 183-207. | |
| [25] | YANG Yintan. Research on SDN Intrusion Detection Technology Based on Convolutional Neural Network[D]. Xi'an: Xidian University, 2019. |
| 杨垠坦. 基于卷积神经网络的SDN入侵检测技术研究[D]. 西安: 西安电子科技大学, 2019. | |
| [26] | KRISHNAN A S, SIVALINGAM K M, SHAMI G, et al. Flow Classification for Network Security Using P4-Based Programmable Data Plane Switches[C]// IEEE. 2023 IEEE 9th International Conference on Network Softwarization. New York: IEEE, 2023: 374-379. |
| [27] | LI Yuliang, MIAO Rui, KIM C, et al. FlowRadar: A Better NetFlow for Data Centers[EB/OL]. (2019-09-18)[2024-06-10]. https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang. |
| [1] | 曹越, 方泊璎, 魏高达, 李金宇, 杨洋, 彭涛. 车载以太网环境下CAN总线入侵检测系统兼容性评估与优化[J]. 信息网络安全, 2025, 25(8): 1175-1195. |
| [2] | 金志刚, 李紫梦, 陈旭阳, 刘泽培. 面向数据不平衡的网络入侵检测系统研究综述[J]. 信息网络安全, 2025, 25(8): 1240-1253. |
| [3] | 荀毅杰, 崔嘉容, 毛伯敏, 秦俊蔓. 基于联邦学习的智能汽车CAN总线入侵检测系统[J]. 信息网络安全, 2025, 25(6): 872-888. |
| [4] | 金增旺, 江令洋, 丁俊怡, 张慧翔, 赵波, 方鹏飞. 工业控制系统安全研究综述[J]. 信息网络安全, 2025, 25(3): 341-363. |
| [5] | 刘晨飞, 万良. 基于时空图神经网络的CAN总线入侵检测方法[J]. 信息网络安全, 2025, 25(3): 478-493. |
| [6] | 刘联海, 黎汇业, 毛冬晖. 基于图像凸包特征的CBAM-CNN网络入侵检测方法[J]. 信息网络安全, 2024, 24(9): 1422-1431. |
| [7] | 张浩, 谢大智, 胡云晟, 叶骏威. 基于半监督学习的网络异常检测研究综述[J]. 信息网络安全, 2024, 24(4): 491-508. |
| [8] | 江荣, 刘海天, 刘聪. 基于集成学习的无监督网络入侵检测方法[J]. 信息网络安全, 2024, 24(3): 411-426. |
| [9] | 冯光升, 蒋舜鹏, 胡先浪, 马明宇. 面向物联网的入侵检测技术研究新进展[J]. 信息网络安全, 2024, 24(2): 167-178. |
| [10] | 金志刚, 丁禹, 武晓栋. 融合梯度差分的双边校正联邦入侵检测算法[J]. 信息网络安全, 2024, 24(2): 293-302. |
| [11] | 孙红哲, 王坚, 王鹏, 安雨龙. 基于Attention-BiTCN的网络入侵检测方法[J]. 信息网络安全, 2024, 24(2): 309-318. |
| [12] | 金志刚, 陈旭阳, 武晓栋, 刘凯. 增量式入侵检测研究综述[J]. 信息网络安全, 2024, 24(12): 1819-1830. |
| [13] | 沈华, 田晨, 郭森森, 慕志颖. 基于对抗性机器学习的网络入侵检测方法研究[J]. 信息网络安全, 2023, 23(8): 66-75. |
| [14] | 彭翰中, 张珠君, 闫理跃, 胡成林. 联盟链下基于联邦学习聚合算法的入侵检测机制优化研究[J]. 信息网络安全, 2023, 23(8): 76-85. |
| [15] | 刘长杰, 石润华. 基于安全高效联邦学习的智能电网入侵检测模型[J]. 信息网络安全, 2023, 23(4): 90-101. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||