信息网络安全 ›› 2025, Vol. 25 ›› Issue (8): 1223-1230.doi: 10.3969/j.issn.1671-1122.2025.08.004

• 理论研究 • 上一篇    下一篇

基于扩散模型和生成对抗网络的生成式隐写方法

熊翱1, 刘雨潇1(), 钱旭盛2, 张楠3   

  1. 1.北京邮电大学网络与交换技术全国重点实验室,北京 100876
    2.国网江苏省电力有限公司营销服务中心,南京 210024
    3.国家电网有限公司客户服务中心,天津 300304
  • 收稿日期:2024-05-27 出版日期:2025-08-10 发布日期:2025-09-09
  • 通讯作者: 刘雨潇 E-mail:liuyuxiao@bupt.edu.cn
  • 作者简介:熊翱(1974—),男,江西,副教授,博士,主要研究方向为网络管理和通信软件|刘雨潇(2000—),男,重庆,硕士研究生,主要研究方向为信息隐藏技术|钱旭盛(1975—),男,江苏,高级工程师,本科,主要研究方向为电力市场理论与策略、电力营销客户服务管理和电子服务渠道运营|张楠(1996—),女,江苏,硕士,主要研究方向为电力营销及大数据
  • 基金资助:
    国家重点研发计划(2022YFB2703400);国家电网科技项目(5700-202353318A-1-1-ZN)

Generative Steganography Method Based on Diffusion Model and Generative Adversarial Network

XIONG Ao1, LIU Yuxiao1(), QIAN Xusheng2, ZHANG Nan3   

  1. 1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China
    2. Marketing Service Center, State Grid Jiangsu Electric Power Co., Ltd., Nanjing 210024, China
    3. Customer Service Center, State Grid Corporation of China, Tianjin 300304, China
  • Received:2024-05-27 Online:2025-08-10 Published:2025-09-09

摘要:

生成式隐写术是一种新兴技术,其核心在于将秘密消息直接编码为隐写图像。该技术通常以现有图像生成模型为基础框架,如生成对抗网络(GAN)和流模型。然而,当前主流的生成式隐写术在秘密信息提取准确率与图像质量两个关键维度上均存在不足。近年来,扩散模型作为新一代图像生成技术,为解决这一技术瓶颈提供了新的思路。文章提出一种融合去噪扩散隐式模型(DDIM)与GAN的生成式隐写方法:首先,通过GAN将秘密消息编码至高斯噪声空间;然后,利用DDIM将噪声转换为隐写图像;最后,依托DDIM的确定性、可逆性及其自编码器结构,高效提取图像中的秘密消息。实验结果表明,该方法在隐写过程的安全性、信息提取准确率以及图像质量等核心指标上均超越现有方案。

关键词: 生成式隐写术, 扩散模型, 生成对抗网络

Abstract:

Generative steganography is an emerging technology that encodes secret messages directly into steganographic images, typically built upon existing image generation frameworks such as generative adversarial networks (GAN) and flow models. However, mainstream generative steganography methods currently exhibit significant shortcomings in two critical dimensions: the accuracy of secret information extraction and image quality. In recent years, diffusion models, as a new generation of image generation technology, have provided novel approaches to addressing this technical bottleneck.This paper proposed a generative steganography method that integrated the denoising diffusion implicit model (DDIM) with GANs. Firstly, encoding the secret message into a Gaussian noise space using GANs. Secondly, transforming the noise into steganographic images via DDIM. Finally, leveraging DDIM's determinism, reversibility, and autoencoder structure to efficiently extract the secret message from the image.Experimental results demonstrate that the proposed method outperforms existing solutions across core metrics, including steganographic security, extraction accuracy, and image quality.

Key words: generative steganography, diffusion model, generative adversarial network

中图分类号: