信息网络安全 ›› 2025, Vol. 25 ›› Issue (7): 1053-1062.doi: 10.3969/j.issn.1671-1122.2025.07.005
张光华1,2,3, 常继友2,3, 陈放2,3, 毛伯敏4, 王鹤1, 张建燕2,3(
)
收稿日期:2024-06-03
出版日期:2025-07-10
发布日期:2025-08-07
通讯作者:
张建燕
E-mail:1179602456@qq.com
作者简介:张光华(1979—),男,河北,教授,博士,CCF会员,主要研究方向为网络与信息安全|常继友(1999—),男,河南,硕士研究生,主要研究方向为物联网安全、嵌入式设备仿真|陈放(2000—),男,河北,硕士研究生,主要研究方向为物联网安全、漏洞检测|毛伯敏(1989—),男,湖北,教授,博士,主要研究方向为空天地一体化网络、卫星物联网、车联网和边缘计算|王鹤(1987—),女,河南,讲师,博士,主要研究方向为应用密码和量子密码协议|张建燕(1982—),女,河北,助理研究员,硕士,主要研究方向为数字通信
基金资助:
ZHANG Guanghua1,2,3, CHANG Jiyou2,3, CHEN Fang2,3, MAO Bomin4, WANG He1, ZHANG Jianyan2,3(
)
Received:2024-06-03
Online:2025-07-10
Published:2025-08-07
Contact:
ZHANG Jianyan
E-mail:1179602456@qq.com
摘要:
物联网设备资源有限,导致传统的漏洞检测技术难以有效应用。固件仿真技术为解决这一问题提供了可能,但现有方案存在硬件依赖性强、运行成本高和可移植性差等问题。针对这些问题,文章提出一种基于库函数动态替换的物联网设备固件仿真方案。首先,设计了基于人机协同的固件仿真方法,通过固件分析和固件托管构建仿真环境,并在固件文件获取过程中引入专家经验。然后,提出一种基于符号执行的库函数替换技术,通过提取上一阶段的关键信息,利用符号执行技术进行分析并指导库函数生成,最终通过将库函数编译为动态链接库完成库函数替换。实验结果表明,相较于FIRMADYNE,文章所提方案的仿真速度平均提升了80.50%,优化后的符号执行运行速度约为优化前的两倍。同时,通过漏洞复现和漏洞挖掘技术进行验证,实验结果表明,该方案的仿真保真度能够满足漏洞检测和漏洞挖掘的需求。
中图分类号:
张光华, 常继友, 陈放, 毛伯敏, 王鹤, 张建燕. 基于库函数动态替换的物联网设备固件仿真方案[J]. 信息网络安全, 2025, 25(7): 1053-1062.
ZHANG Guanghua, CHANG Jiyou, CHEN Fang, MAO Bomin, WANG He, ZHANG Jianyan. Firmware Simulation Scheme of IoT Devices Based on Dynamic Substitution of Library Functions[J]. Netinfo Security, 2025, 25(7): 1053-1062.
表2
数据集产品固件仿真时间
| 设备型号 | FIRMADYNE/s | RLEmu/s | 提升幅度 |
|---|---|---|---|
| AC15 | 72.0644 | 8.2368 | 88.57% |
| DIR-600 | 66.7150 | 9.8483 | 85.24% |
| DIR-859 | 81.0538 | 10.6115 | 86.91% |
| DIR-823G | 67.1768 | 8.5844 | 87.22% |
| DIR-619L | 69.3207 | 8.2919 | 88.04% |
| RV160 | 135.1891 | 87.3373 | 35.40% |
| HG532 | 68.5444 | 6.6619 | 90.28% |
| R9000 | 97.1509 | 16.4884 | 83.03% |
| R6400 | 100.3214 | 11.5311 | 88.51% |
| T310 | 78.9124 | 22.2200 | 71.84% |
| 平均 | 83.6448 | 18.9811 | 80.50% |
表5
后续仿真时间
| 设备型号 | 初次仿真/s | 后续仿真/s | 提升幅度 |
|---|---|---|---|
| AC15 | 8.2368 | 5.1482 | 37.50% |
| DIR-600 | 9.8483 | 8.6387 | 12.28% |
| DIR-859 | 10.6115 | 8.1962 | 22.76% |
| DIR-823G | 8.5844 | 6.3457 | 26.08% |
| DIR-619L | 8.2919 | 3.9558 | 52.29% |
| RV160 | 87.3373 | 78.3328 | 10.31% |
| HG532 | 6.6619 | 2.9420 | 55.84% |
| R9000 | 16.4884 | 11.6889 | 29.11% |
| R6400 | 11.5311 | 10.7336 | 6.92% |
| T310 | 22.2200 | 18.0240 | 18.88% |
| 平均 | 18.9811 | 15.4005 | 27.20% |
| [1] | KUANG Boyu, FU Anmin, GAO Yansong, et al. FeSA: Automatic Federated Swarm Attestation on Dynamic Large-Scale IoT Devices[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(4): 2954-2969. |
| [2] | ARTENSTEIN N. Broadpwn: Remotely Compromising Android and iOS via a Bug in Broadcom’s Wi-Fi Chipsets[EB/OL]. (2017-07-27) [2024-05-29]. https://blog.exodusintel.com/2017/07/26/broadpwn/. |
| [3] | MARGOLIS J, OH T T, JADHAV S, et al. An In-Depth Analysis of the Mirai Botnet[C]// IEEE. 2017 International Conference on Software Security and Assurance (ICSSA). New York: IEEE, 2017: 6-12. |
| [4] | ZHANG Hao, SHEN Shandian, LIU Peng, et al. Review of Firmware Emulators in Embedded Devices[J]. Journal of Computer Research and Development, 2023, 60(10): 2255-2270. |
| 张浩, 申珊靛, 刘鹏, 等. 嵌入式设备固件仿真器综述[J]. 计算机研究与发展, 2023, 60(10): 2255-2270. | |
| [5] | FENG Xiaotao, ZHU Xiaogang, HAN Qinglong, et al. Detecting Vulnerability on IoT Device Firmware: A Survey[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 10(1): 25-41. |
| [6] | YU Yingchao, CHEN Zuoning, GAN Shuitao, et al. Research on the Technologies of Security Analysis Technologies on the Embedded Device Firmware[J]. Chinese Journal of Computers, 2021, 44(5): 859-881. |
| 于颖超, 陈左宁, 甘水滔, 等. 嵌入式设备固件安全分析技术研究[J]. 计算机学报, 2021, 44(5): 859-881. | |
| [7] | TANASACHE F D, SORELLA M, BONOMI S, et al. Building an Emulation Environment for Cyber Security Analyses of Complex Networked Systems[EB/OL]. (2018-10-23) [2024-05-29]. https://doi.org/10.48550/arXiv.1810.09752. |
| [8] | WRIGHT C, MOEGLEIN W A, BAGCHI S, et al. Challenges in Firmware Re-Hosting, Emulation, and Analysis[J]. ACM Computing Surveys (CSUR), 2022, 54(1): 1-36. |
| [9] | SCHWARTZ E J, AVGERINOS T, BRUMLEY D. All You Ever Wanted to Know about Dynamic Taint Analysis and Forward Symbolic Execution (But Might Have Been Afraid to Ask)[C]// IEEE. 2010 IEEE Symposium on Security and Privacy. New York: IEEE, 2010: 317-331. |
| [10] | FASANO A, BALLO T, MUENCH M, et al. SoK: Enabling Security Analyses of Embedded Systems via Rehosting[C]// ACM. The 2021 ACM Asia Conference on Computer and Communications Security. New York: ACM, 2021: 687-701. |
| [11] | ZADDACH J, BRUNO L, FRANCILLON A, et al. Avatar: A Framework to Support Dynamic Security Analysis of Embedded Systems’ Firmwares[C]// IEEE. 2014 Network and Distributed System Security Symposium. New York: IEEE, 2014: 1-16. |
| [12] | KAMMERSTETTER M, PLATZER C, KASTNER W. Prospect: Peripheral Proxying Supported Embedded Code Testing[C]// ACM. The 9th ACM Symposium on Information, Computer and Communications Security. New York: ACM, 2014: 329-340. |
| [13] | BELLARD F. QEMU, a Fast and Portable Dynamic Translator[C]// USENIX. The Annual Conference on USENIX Annual Technical Conference. Berkley: USENIX, 2005: 41-46. |
| [14] | CHEN D D, EGELE M, WOO M, et al. Towards Automated Dynamic Analysis for Linux-Based Embedded Firmware[C]// IEEE. 2016 Network and Distributed System Security Symposium. New York: IEEE, 2016: 1-16. |
| [15] | KIM M, KIM D, KIM E, et al. FirmAE: Towards Large-Scale Emulation of IoT Firmware for Dynamic Analysis[C]// ACM. Annual Computer Security Applications Conference. New York: ACM, 2020: 733-745. |
| [16] | GUSTAFSON E, MUENCH M, SPENSKY C, et al. Toward the Analysis of Embedded Firmware through Automated Re-Hosting[C]// USENIX. 22nd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019). Berkley: USENIX, 2019: 135-150. |
| [17] | FENG Bo, MERA A, LU Long. {P2IM}: Scalable and Hardware-Independent Firmware Testing via Automatic Peripheral Interface Modeling[C]// USENIX. 29th USENIX Security Symposium. Berkley: USENIX, 2020: 1237-1254. |
| [18] | CLEMENTS A A, GUSTAFSON E, SCHARNOWSKI T, et al. {HALucinator}: Firmware Re-Hosting through Abstraction Layer Emulation[C]// USENIX. 29th USENIX Security Symposium. Berkley: USENIX, 2020: 1201-1218. |
| [19] | LI Wenqiang, GUAN Le, LIN Jingqiang, et al. From Library Portability to Para-Rehosting: Natively Executing Microcontroller Software on Commodity Hardware[EB/OL]. (2021-07-04) [2024-05-29]. https://arxiv.org/abs/2107.12867. |
| [20] | ZHOU Wei, ZHANG Lan, GUAN Le, et al. What Your Firmware Tells You is Not How You Should Emulate It: A Specification-Guided Approach for Firmware Emulation[C]// ACM. The 2022 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2022: 3269-3283. |
| [21] | CAO Chen, GUAN Le, MING Jiang, et al. Device-Agnostic Firmware Execution is Possible: A Concolic Execution Approach for Peripheral Emulation[C]// ACM. Annual Computer Security Applications Conference. New York: ACM, 2020: 746-759. |
| [22] | ZHOU Wei, GUAN Le, LIU Peng, et al. Automatic Firmware Emulation through Invalidity-Guided Knowledge Inference[C]// USENIX. 30th USENIX Security Symposium. Berkley: USENIX, 2021: 2007-2024. |
| [23] | SHOSHITAISHVILI Y, WANG Ruoyu, SALLS C, et al. SOK: (State of ) The Art of War: Offensive Techniques in Binary Analysis[C]// IEEE. 2016 IEEE Symposium on Security and Privacy (SP). New York: IEEE, 2016: 138-157. |
| [24] | SCHARNOWSKI T, BARS N, SCHLOEGEL M, et al. Fuzzware: Using Precise {MMIO} Modeling for Effective Firmware Fuzzing[C]// USENIX. 31st USENIX Security Symposium. Berkley: USENIX, 2022: 1239-1256. |
| [1] | 王梅, 杨潇然, 李增鹏. 简洁低交互的物联网设备认证协议研究[J]. 信息网络安全, 2025, 25(7): 1032-1043. |
| [2] | 邓东上, 王伟业, 张卫东, 吴宣够. 基于模型特征方向的分层个性化联邦学习框架[J]. 信息网络安全, 2025, 25(6): 889-897. |
| [3] | 李强, 沈援海, 王锦泽, 黄晏瑜, 孙建国. 一种面向工业物联网环境的离线—在线签名方案[J]. 信息网络安全, 2025, 25(3): 392-402. |
| [4] | 王鹃, 张勃显, 张志杰, 谢海宁, 付金涛, 王洋. 基于模糊测试的Java反序列化漏洞挖掘[J]. 信息网络安全, 2025, 25(1): 1-12. |
| [5] | 袁征, 张跃飞, 冯笑, 乔雅馨. 基于PUF的电力物联网智能终端认证协议[J]. 信息网络安全, 2025, 25(1): 13-26. |
| [6] | 张学旺, 陈思宇, 罗欣悦, 雷志滔, 谢昊飞. 面向云辅助工业物联网的高效可搜索属性基加密方案[J]. 信息网络安全, 2024, 24(9): 1352-1363. |
| [7] | 邢长友, 王梓澎, 张国敏, 丁科. 基于预训练Transformers的物联网设备识别方法[J]. 信息网络安全, 2024, 24(8): 1277-1290. |
| [8] | 张晓均, 张楠, 郝云溥, 王周阳, 薛婧婷. 工业物联网系统基于混沌映射三因素认证与密钥协商协议[J]. 信息网络安全, 2024, 24(7): 1015-1026. |
| [9] | 李志华, 陈亮, 卢徐霖, 方朝晖, 钱军浩. 面向物联网Mirai僵尸网络的轻量级检测方法[J]. 信息网络安全, 2024, 24(5): 667-681. |
| [10] | 杨杰超, 胡汉平, 帅燕, 邓宇昕. 基于时变互耦合双混沌系统的轻量级序列密码[J]. 信息网络安全, 2024, 24(3): 385-397. |
| [11] | 冯光升, 蒋舜鹏, 胡先浪, 马明宇. 面向物联网的入侵检测技术研究新进展[J]. 信息网络安全, 2024, 24(2): 167-178. |
| [12] | 翟鹏, 何泾沙, 张昱. 物联网环境下基于SM9算法和区块链技术的身份认证方法[J]. 信息网络安全, 2024, 24(2): 179-187. |
| [13] | 王鹃, 龚家新, 蔺子卿, 张晓娟. 多维深度导向的Java Web模糊测试方法[J]. 信息网络安全, 2024, 24(2): 282-292. |
| [14] | 印杰, 陈浦, 杨桂年, 谢文伟, 梁广俊. 基于人工智能的物联网DDoS攻击检测[J]. 信息网络安全, 2024, 24(11): 1615-1623. |
| [15] | 张展鹏, 王鹃, 张冲, 王杰, 胡宇义. 基于图同构网络的高效Web模糊测试技术研究[J]. 信息网络安全, 2024, 24(10): 1544-1552. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||