信息网络安全 ›› 2025, Vol. 25 ›› Issue (6): 933-942.doi: 10.3969/j.issn.1671-1122.2025.06.008

• 专题论文: 网络主动防御 • 上一篇    下一篇

基于深度语义解析的API越权漏洞攻击主动防御方法

冯景瑜, 潘濛, 王佳林(), 赵翔   

  1. 西安邮电大学无线网络安全技术国家工程研究中心,西安 710121
  • 收稿日期:2025-02-26 出版日期:2025-06-10 发布日期:2025-07-11
  • 通讯作者: 王佳林 15592291861@163.com
  • 作者简介:冯景瑜(1984—),男,甘肃,教授,博士,主要研究方向为人工智能安全、物联网安全、网络攻防|潘濛(2000—),女,陕西,硕士研究生,主要研究方向为人工智能安全|王佳林(1998—),男,陕西,硕士研究生,主要研究方向为工业互联网安全|赵翔(2000—),男,陕西,硕士研究生,主要研究方向为工业互联网安全。
  • 基金资助:
    国家自然科学基金(62102312);陕西省重点研发计划(2024GX-YBXM-076)

Deep Semantic Parsing Based Active Defense against API Overstep Vulnerabilities

FENG Jingyu, PAN Meng, WANG Jialin(), ZHAO Xiang   

  1. National Engineering Research Center for Wireless Security, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
  • Received:2025-02-26 Online:2025-06-10 Published:2025-07-11

摘要:

静态化防御机制因特征与语义理解有限,难以应对API越权漏洞的动态隐蔽威胁,主动防御已逐渐成为增强网络安全的有效手段。文章提出一种融合动态语义感知与对抗验证的主动防御方法,有效阻断API越权漏洞攻击威胁;设计一种高效的动态网页爬取策略,以充分获取页面信息,结合 MiniLM 模型分析响应包内容与 URL信息的关联性,实现有效载荷的构造。文章通过微调 BERT 模型对 URL 进行自定义类别划分,以此为基础,采用 Trans-LVD 模型进行页面相似度分析,量化 URL 之间的相似程度,识别可能存在的越权漏洞,实现对网络系统安全漏洞的修补和相关配置,提升系统对未知威胁的适应性与防护能力。最后,在业界工具基准测试下进行实验分析,证明该方法在检测精度、适应性及主动防御能力方面的优越性。

关键词: 深度语义解析, 主动防御, 越权漏洞, 对抗验证

Abstract:

Static defense mechanisms face difficulties addressing dynamic hidden API transgression threats due to limited feature and semantic understanding. Active defense has emerged as an effective approach to enhance network security. This paper proposed an active defense method integrating dynamic semantic sensing and adversarial verification to block API overstepping vulnerability attacks. A dynamic web crawling strategy efficiently obtained page data. This data was combined with a MiniLM model to analyze correlations between response payloads and URLs, enabling payload construction. BERT models were fine-tuned to classify URLs into custom categories. Based on these classifications, a Trans-LVD model performed page similarity analysis to quantify URL similarity levels, identify potential overstepping vulnerabilities, and automate security patching and configuration adjustments. This approach enhanced system adaptability and protection against unknown threats. Experiments were conducted using industry-standard benchmarks to demonstrate the method’s effectiveness in detection accuracy, adaptability, and active defense capabilities.

Key words: deep semantic parsing, active defense, overstepping vulnerabilities, adversarial verification

中图分类号: