信息网络安全 ›› 2025, Vol. 25 ›› Issue (5): 747-757.doi: 10.3969/j.issn.1671-1122.2025.05.007
收稿日期:2025-02-15
出版日期:2025-05-10
发布日期:2025-06-10
通讯作者:
秦金磊 作者简介:秦金磊(1979—),男,河南,副教授,博士,主要研究方向为系统安全、云计算等|康毅敏(2000—),女,山西,硕士研究生,主要研究方向为隐私保护、区块链技术|李整(1981—),女,河北,副教授,博士,主要研究方向为智能算法
基金资助:
QIN Jinlei(
), KANG Yimin, LI Zheng
Received:2025-02-15
Online:2025-05-10
Published:2025-06-10
摘要:
智能电网在利用智能电表进行数据采集与传输时,存在用户隐私泄露风险,同时还面临着缺乏细粒度数据分析、计算开销高及系统稳定性差等挑战。针对这些问题,文章提出一个智能电网中轻量级细粒度的多维多子集隐私保护数据聚合(LFMMP-DA)方案。首先,通过高级加密标准(AES)算法保证数据安全传输;然后,利用多秘密共享和超递增序列实现细粒度的多维多子集聚合,该方法不仅使管理中心能够获取不同维度的多子集数据和用户数量,还确保即使智能电表和雾节点同时发生故障,系统仍能正常执行数据聚合和解密;最后,通过集成雾计算、区块链和星际文件系统,设计了一个无需可信第三方的分布式存储的数据聚合模型。安全分析与实验结果表明,该方案能够有效保障用户隐私和数据完整性,并在计算开销和通信开销方面最高可分别降低94.94%和80.00%,验证了所提方案的有效性。
中图分类号:
秦金磊, 康毅敏, 李整. 智能电网中轻量级细粒度的多维多子集隐私保护数据聚合[J]. 信息网络安全, 2025, 25(5): 747-757.
QIN Jinlei, KANG Yimin, LI Zheng. Lightweight Fine-Grained Multi-Dimensional Multi-Subset Privacy-Preserving Data Aggregation for Smart Grid[J]. Netinfo Security, 2025, 25(5): 747-757.
表1
符号表
| 符号 | 定义 |
|---|---|
| 加密数据的模数 | |
| 安全哈希函数 | |
| 多秘密共享的模数 | |
| 群的阶数 | |
| o | 安全参数 |
| 阶为 | |
| 超递增序列 | |
| 第 | |
| 所有维度数据最大值 | |
| 多秘密共享的阈值 | |
| FN总数 | |
| SM总数 | |
| 区域个数 | |
| MC和 | |
| MC和 | |
| 时间戳 | |
表4
不同设备端的计算开销对比
| 方案 | SM计算开销/ms | FN计算开销/ms | MC计算开销/ms |
|---|---|---|---|
| 文献[10] | lTpm+Tme+Thp= 29.4298+12.1926l | (n+1)Thp= 26.8531+26.8531n | Thp+Tme= 29.4298 |
| 文献[11] | 3Tpm+Tme+Thp= 66.0076 | (n+1)Tbp+3Tpm+ Tme+Thp=72.9847+ 6.9771n | 2Tbp+Tme= 16.5309 |
| 文献[12] | (w+8)Tpm+ (3w+6)Thp= 258.6594+ 92.7519w | (2n+1)Tpm+(n+1)Thp= 39.0457+51.2383n | (2n+3)Tpm+ (2n+1)Tbp= 43.5549+38.3394n |
| LFMMP-DA | TAES-Enc+Tpm+ Thp=41.2070 | (n+1)Tbp+TAES-Dec+ TAES-Enc+Tpm+Thp= 48.4376+6.9771n | (m+1)Tbp+TAES-Dec= 7.2306+6.9771m |
表7
FN计算开销
| 方案 | |||||
|---|---|---|---|---|---|
| 50 | 100 | 150 | 200 | 250 | |
| 文献[10] | 1369.5081 ms | 2712.1631 ms | 4054.8181 ms | 5397.4731 ms | 6740.1281 ms |
| 文献[11] | 421.8397 ms | 770.6947 ms | 1119.5497 ms | 1468.4047 ms | 1817.2597 ms |
| 文献[12] | 2600.9607 ms | 3820.2207 ms | 5039.4807 ms | 6258.7407 ms | 7478.0007 ms |
| LFMMP-DA | 397.2926 ms | 746.1476 ms | 1095.0026 ms | 1443.8576 ms | 1792.7126 ms |
| [1] | FANG Xi, MISRA S, XUE Guoliang, et al. Smart Grid-The New and Improved Power Grid: A Survey[J]. IEEE Communications Surveys & Tutorials, 2011, 14(4): 944-980. |
| [2] | KUMAR P, LIN Yun, BAI Guangdong, et al. Smart Grid Metering Networks: A Survey on Security, Privacy and Open Research Issues[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2886-2927. |
| [3] | ZHANG Jianhong, WEI Jie. PFDAM: Privacy-Preserving Fine-Grained Data Aggregation Scheme Supporting Multifunctionality in Smart Grid[J]. IEEE Internet of Things Journal, 2024, 11(15): 25520-25533. |
| [4] | CHEN Songqing, ZHANG Tao, SHI Weisong. Fog Computing[J]. IEEE Internet Computing, 2017, 21(2): 4-6. |
| [5] | MCDANIEL P, MCLAUGHLIN S. Security and Privacy Challenges in the Smart Grid[J]. IEEE Security Privacy, 2009, 7(3): 75-77. |
| [6] | MOHAMMADALI A, HAGHIGHI M S. A Privacy-Preserving Homomorphic Scheme with Multiple Dimensions and Fault Tolerance for Metering Data Aggregation in Smart Grid[J]. IEEE Transactions on Smart Grid, 2021, 12(6): 5212-5220. |
| [7] | SHI Hang, ZHAO Jie, GU Chonglin, et al. Enabling Efficient Multidimensional Encrypted Data Aggregation for Fog-Cloud-Based Smart Grid[C]// IEEE. 16th International Conference on Cloud Computing (CLOUD). New York: IEEE, 2023: 557-559. |
| [8] | SINGH A K, KUMAR J. A Privacy-Preserving Multidimensional Data Aggregation Scheme with Secure Query Processing for Smart Grid[J]. The Journal of Supercomputing, 2023, 79(4): 3750-3770. |
| [9] | LIU Jingwei, WANG Haoze, BAO Jiajia, et al. RPMDA: Robust and Privacy-Enhanced Multidimensional Data Aggregation Scheme for Fog-Assisted Smart Grids[J]. IEEE Internet of Things Journal, 2024, 11(9): 16021-16032. |
| [10] | XIA Zhuoqun, ZHANG Yichao, GU Ke, et al. Secure Multi-Dimensional and Multi-Angle Electricity Data Aggregation Scheme for Fog Computing-Based Smart Metering System[J]. IEEE Transactions on Green Communications and Networking, 2022, 6(1): 313-328. |
| [11] | ZHAO Shuai, XU Shuhua, HAN Song, et al. PPMM-DA: Privacy-Preserving Multidimensional and Multisubset Data Aggregation With Differential Privacy for Fog-Based Smart Grids[J]. IEEE Internet of Things Journal, 2024, 11(4): 6096-6110. |
| [12] | TAN Zuowen, CAO Faxin, LIU Xingzhi, et al. LPPMM-DA: Lightweight Privacy-Preserving Multi-Dimensional and Multi-Subset Data Aggregation for Smart Grid[J]. IEEE Transactions on Smart Grid, 2025, 16(2): 1801-1816. |
| [13] | CHEN Dong, ZHOU Tanping, LIU Wenchao, et al. MDA-FLH: Multidimensional Data Aggregation Scheme with Fine-Grained Linear Homomorphism for Smart Grid[J]. IEEE Internet of Things Journal, 2024, 11(2): 3524-3538. |
| [14] | SUN Dan, ZHAO Shuai, TAO Wanqiong, et al. MPP-MDA: Multifunctional Privacy-Preserving Multisubset Data Aggregation for AMI Networks[J]. IEEE Internet of Things Journal, 2024, 11(24): 40026-40040. |
| [15] | WU Liqiang, XU Ming, FU Shaojing, et al. FPDA: Fault-Tolerant and Privacy-Enhanced Data Aggregation Scheme in Fog-Assisted Smart Grid[J]. IEEE Internet of Things Journal, 2022, 9(7): 5254-5265. |
| [16] | ZHOU Tanping, CHEN Shuo, XIE Huiyu, et al. SFPDA: Secure Fault-Tolerant and Privacy-Enhanced Data Aggregation Scheme for Smart Grid Without TA[J]. IEEE Internet of Things Journal, 2024, 11(21): 35669-35680. |
| [17] | PANG Haolin, HE Kai, FU Youcai, et al. Enabling Efficient and Malicious Secure Data Aggregation in Smart Grid with False Data Detection[J]. IEEE Transactions on Smart Grid, 2024, 15(2): 2203-2213. |
| [18] | ZHU Fei, GUO Duan, ABUADBBA S, et al. Lightweight Verifiable Privacy-Preserving Data Aggregation for Smart Grids[J]. IEEE Internet of Things Journal, 2024, 11(19): 31249-31259. |
| [19] |
LIU Jianan, WENG Jian, YANG Anjia, et al. Enabling Efficient and Privacy-Preserving Aggregation Communication and Function Query for Fog Computing-Based Smart Grid[J]. IEEE Transactions on Smart Grid, 2020, 11(1): 247-257.
doi: 10.1109/TSG.2019.2920836 |
| [20] | ZHAN Yu, ZHOU Liguo, WANG Baocang, et al. Efficient Function Queryable and Privacy Preserving Data Aggregation Scheme in Smart Grid[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(12): 3430-3441. |
| [21] |
LUO Xinyi, XUE Kaiping, XU Jie, et al. Blockchain Based Secure Data Aggregation and Distributed Power Dispatching for Microgrids[J]. IEEE Transactions on Smart Grid, 2021, 12(6): 5268-5279.
doi: 10.1109/TSG.2021.3099347 |
| [22] | LEI Lijing, WANG Feng, ZHAO Chenbin, et al. Efficient Blockchain-Based Data Aggregation Scheme with Privacy-Preserving on the Smart Grid[J]. IEEE Transactions on Smart Grid, 2024, 15(6): 6112-6125. |
| [23] | BONEH D, LYNN B, SHACHAM H. Short Signatures from the Weil Pairing[J]. Journal of Cryptology, 2004, 17: 297-319. |
| [24] | YANG Chouchen, CHANG Tingyi, HWANG M. A (t, n) Multi-Secret Sharing Scheme[J]. Applied Mathematics and Computation, 2004, 151(2): 483-490. |
| [25] | DAEMEN J, RIJMEN V. The Design of Rijndael: The Advanced Encryption Standard (AES)[M]. Heidelberg: Springer, 2020. |
| [26] | DE CARO A, IOVINO V. JPBC: Java Pairing Based Cryptography[C]// IEEE. 2011 IEEE Symposium on Computers and Communications (ISCC). New York: IEEE, 2011: 850-855. |
| [27] | GIRY D. Cryptographic Key Length Recommendations[EB/OL]. (2020-05-24)[2024-11-25]. https://www.keylength.com/. |
| [1] | 赵锋, 范淞, 赵艳琦, 陈谦. 基于本地差分隐私的可穿戴医疗设备流数据隐私保护方法[J]. 信息网络安全, 2025, 25(5): 700-712. |
| [2] | 叶佳骏, 高翠凤, 薛吟兴. 基于静态分析的价格预言机操纵源代码检测方法研究[J]. 信息网络安全, 2025, 25(5): 732-746. |
| [3] | 朱晓强, 张皓文, 林彦孜, 刘吉强. 基于可信数字身份的轻量级分布式认证方案[J]. 信息网络安全, 2025, 25(5): 817-827. |
| [4] | 胡宇涵, 杨高, 蔡红叶, 付俊松. 三维分布式无线智能系统数据传输路径隐私保护方案[J]. 信息网络安全, 2025, 25(4): 536-549. |
| [5] | 何可, 王建华, 于丹, 陈永乐. 基于自适应采样的机器遗忘方法[J]. 信息网络安全, 2025, 25(4): 630-639. |
| [6] | 杨亚涛, 丁渝诚, 刘培鹤, 桑鹏. 基于区块链的隐私保护和数字认证研究[J]. 信息网络安全, 2025, 25(4): 640-653. |
| [7] | 张雨轩, 黄诚, 柳蓉, 冷涛. 结合提示词微调的智能合约漏洞检测方法[J]. 信息网络安全, 2025, 25(4): 664-673. |
| [8] | 李佳东, 曾海涛, 彭莉, 汪晓丁. 一种保护数据隐私的匿名路由联邦学习框架[J]. 信息网络安全, 2025, 25(3): 494-503. |
| [9] | 王勇, 武一帆, 万前程. 基于中国剩余定理的可编辑区块链方案研究[J]. 信息网络安全, 2025, 25(1): 36-47. |
| [10] | 张新有, 刘庆夫, 冯力, 邢焕来. 基于多权威属性基加密的智能电网数据安全共享模型[J]. 信息网络安全, 2025, 25(1): 98-109. |
| [11] | 温金明, 刘庆, 陈洁, 吴永东. 基于错误学习的全同态加密技术研究现状与挑战[J]. 信息网络安全, 2024, 24(9): 1328-1351. |
| [12] | 林湛航, 向广利, 李祯鹏, 徐子怡. 基于同态加密的前馈神经网络隐私保护方案[J]. 信息网络安全, 2024, 24(9): 1375-1385. |
| [13] | 余礼苏, 李彪, 姚元志, 温家进, 黎子鹏, 王振. 区块链辅助无人机移动边缘计算系统的性能优化[J]. 信息网络安全, 2024, 24(9): 1432-1443. |
| [14] | 郭倩, 赵津, 过弋. 基于分层聚类的个性化联邦学习隐私保护框架[J]. 信息网络安全, 2024, 24(8): 1196-1209. |
| [15] | 吕秋云, 周凌飞, 任一支, 周士飞, 盛春杰. 一种全生命周期可控的公共数据共享方案[J]. 信息网络安全, 2024, 24(8): 1291-1305. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||