信息网络安全 ›› 2025, Vol. 25 ›› Issue (5): 700-712.doi: 10.3969/j.issn.1671-1122.2025.05.003

• 理论研究 • 上一篇    下一篇

基于本地差分隐私的可穿戴医疗设备流数据隐私保护方法

赵锋1, 范淞1(), 赵艳琦1, 陈谦2   

  1. 1.西安邮电大学网络空间安全学院,西安 710121
    2.西安电子科技大学数学与交叉科学研究院,西安 710071
  • 收稿日期:2024-12-16 出版日期:2025-05-10 发布日期:2025-06-10
  • 通讯作者: 范淞 songfan@stu.xupt.edu.cn
  • 作者简介:赵锋(1979—),男,河南,副教授,硕士,主要研究方向为可穿戴设备用户隐私保护及存储安全|范淞(2000—),男,陕西,硕士研究生,主要研究方向为差分隐私|赵艳琦(1992—),男,吉林,副教授,博士,CCF会员,主要研究方向为公钥密码学、区块链安全|陈谦(1993—),男,陕西,博士,主要研究方向为联邦学习、应用密码学、人工智能安全
  • 基金资助:
    国家重点研发计划(2022YFB2701500);国家自然科学基金(62202375);陕西省科学技术协会青年人才托举计划(20220134)

Privacy-Preserving Methods for Streaming Data in Wearable Medical Devices Based on Local Differential Privacy

ZHAO Feng1, FAN Song1(), ZHAO Yanqi1, CHEN Qian2   

  1. 1. School of Cyberspace Security, Xi’an University of Posts & Telecommunications, Xi’an 710121, China
    2. Institute of Mathematics and Interdisciplinary Sciences, Xidian University, Xi’an 710071, China
  • Received:2024-12-16 Online:2025-05-10 Published:2025-06-10

摘要:

可穿戴医疗设备实时产生的医疗数据为健康监测及慢性病管理提供了实时监测与个性化管理的便利。然而,这类医疗数据(如心率、血糖)在应用过程中面临着隐私泄露的风险,尤其是在需要与第三方机构进行数据共享时。因此,如何保护可穿戴医疗设备产生的医疗数据成为亟待解决的问题。文章提出一种基于本地差分隐私的可穿戴医疗设备流数据隐私保护方法。首先,根据原始流数据特点识别出能够有效表示曲线趋势的显著点,将冗余点删除以减少隐私预算的消耗,并根据显著点的时间尺度自适应生成随机噪声。然后,结合Laplace机制为显著点添加随机噪声以保护数据隐私。为了防止攻击者根据噪声显著点中蕴含的统计信息推断原始数据流的隐私信息,在方案中设计卡尔曼滤波机制对冗余点数据进行预测,生成虚拟显著点并实现数据流曲线的重构。基于PAMAP真实数据集的实验表明,在相同隐私预算下,文章方案相比现有可穿戴医疗设备隐私保护方案具有更高数据可用性。

关键词: 可穿戴医疗设备, 流数据, 本地差分隐私, 隐私保护

Abstract:

The real-time medical data generated by wearable medical devices provide convenience for health monitoring and chronic disease management in terms of real-time monitoring, personalized management. However, the application of these medical data (such as heart rate, blood sugar) is vulnerable to privacy disclosure, especially when the data is shared with third parties. Therefore, how to protect the medical data generated by wearable medical devices has become a crucial issue to be solved. This paper proposed a method of stream data privacy protection for wearable medical devices based on local differential privacy (LDP). First, significant points that can effectively represent the curve trend were identified according to the characteristics of the original stream data, and redundant points other than significant points were deleted to reduce the consumption of the privacy budget, based on which random noise was generated adaptively according to the time scale of significant points. Then, combined with Laplace mechanism, random noise was added to the significant points to protect data privacy. In order to prevent data attackers from inferring the privacy information of the original data stream based on the statistical information contained in the significant points of noise, a Kalman filtering mechanism was designed in the final solution to predict the redundant point data. The experiments on the PAMAP real dataset indicate that, under the same privacy budget, our proposed solution exhibits higher data utility compared to existing privacy protection schemes for wearable medical devices.

Key words: wearable medical devices, streaming data, local differential privacy, privacy protection

中图分类号: