信息网络安全 ›› 2025, Vol. 25 ›› Issue (5): 700-712.doi: 10.3969/j.issn.1671-1122.2025.05.003
收稿日期:2024-12-16
出版日期:2025-05-10
发布日期:2025-06-10
通讯作者:
范淞 作者简介:赵锋(1979—),男,河南,副教授,硕士,主要研究方向为可穿戴设备用户隐私保护及存储安全|范淞(2000—),男,陕西,硕士研究生,主要研究方向为差分隐私|赵艳琦(1992—),男,吉林,副教授,博士,CCF会员,主要研究方向为公钥密码学、区块链安全|陈谦(1993—),男,陕西,博士,主要研究方向为联邦学习、应用密码学、人工智能安全
基金资助:
ZHAO Feng1, FAN Song1(
), ZHAO Yanqi1, CHEN Qian2
Received:2024-12-16
Online:2025-05-10
Published:2025-06-10
摘要:
可穿戴医疗设备实时产生的医疗数据为健康监测及慢性病管理提供了实时监测与个性化管理的便利。然而,这类医疗数据(如心率、血糖)在应用过程中面临着隐私泄露的风险,尤其是在需要与第三方机构进行数据共享时。因此,如何保护可穿戴医疗设备产生的医疗数据成为亟待解决的问题。文章提出一种基于本地差分隐私的可穿戴医疗设备流数据隐私保护方法。首先,根据原始流数据特点识别出能够有效表示曲线趋势的显著点,将冗余点删除以减少隐私预算的消耗,并根据显著点的时间尺度自适应生成随机噪声。然后,结合Laplace机制为显著点添加随机噪声以保护数据隐私。为了防止攻击者根据噪声显著点中蕴含的统计信息推断原始数据流的隐私信息,在方案中设计卡尔曼滤波机制对冗余点数据进行预测,生成虚拟显著点并实现数据流曲线的重构。基于PAMAP真实数据集的实验表明,在相同隐私预算下,文章方案相比现有可穿戴医疗设备隐私保护方案具有更高数据可用性。
中图分类号:
赵锋, 范淞, 赵艳琦, 陈谦. 基于本地差分隐私的可穿戴医疗设备流数据隐私保护方法[J]. 信息网络安全, 2025, 25(5): 700-712.
ZHAO Feng, FAN Song, ZHAO Yanqi, CHEN Qian. Privacy-Preserving Methods for Streaming Data in Wearable Medical Devices Based on Local Differential Privacy[J]. Netinfo Security, 2025, 25(5): 700-712.
| [1] | LIU Qiang, LI Tong, YU Yang, et al. Data Security and Privacy Preserving Techniques for Wearable Devices a Survey[J]. Journal of Computer Research and Development, 2018, 55(1): 14-29. |
| 刘强, 李桐, 于洋, 等. 面向可穿戴设备的数据安全隐私保护技术综述[J]. 计算机研究与发展, 2018, 55(1): 14-29. | |
| [2] |
ZHANG Wei, ZHOU Yini, ZHOU Yi. Validation of the Watch-Type HUAWEI WATCH D Oscillometric Wrist Blood Pressure Monitor in Adult Chinese[J]. Blood Pressure Monitoring, 2022, 27(5): 353-356.
doi: 10.1097/MBP.0000000000000608 pmid: 35687029 |
| [3] |
CAMPION E W, JARCHO J A. Watched by Apple[J]. New England Journal of Medicine, 2019, 381(20): 1964-1965.
doi: 10.1056/NEJMe1913980 |
| [4] | WANG Qian, ZHANG Yan, LU Xiao, et al. RescueDP: Real-Time Spatio-Temporal Crowd-Sourced Data Publishing with Differential Privacy[C]// IEEE. IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications. New York: IEEE, 2016: 1-9. |
| [5] | ZHANG Hancheng. The Realistic Dilemma and Compliance Response of Health and Medical Data Sharing[J]. Medicine and Philosophy, 2024, 45(17): 52-57. |
| 张汉成. 健康医疗数据共享的现实困境与合规因应[J]. 医学与哲学, 2024, 45(17): 52-57. | |
| [6] | DWORK C, MCSHERRY F, NISSIM K, et al. Calibrating Noise to Sensitivity in Private Data Analysis[C]// Springer. Theory of Cryptography:Third Theory of Cryptography Conference. Heidelberg: Springer, 2006: 265-284. |
| [7] | KASIVISWANATHAN S P, LEE H K, NISSIM K, et al. What Can We Learn Privately?[J]. SIAM Journal on Computing, 2011, 40(3): 793-826. |
| [8] | KIM J W, JANG B, YOO H. Privacy-Preserving Aggregation of Personal Health Data Streams[EB/OL]. (2018-11-30)[2024-12-02]. https://doi.org/10.1371/journal.pone.0207639. |
| [9] | LI Zhangbing, WANG Baichuan, LI Jinsheng, et al. Local Differential Privacy Protection for Wearable Device Data[EB/OL]. (2022-08-17)[2024-12-02]. https://doi.org/10.1371/journal.pone.0272766. |
| [10] | DUCHI J C, JORDAN M I, WAINWRIGHT M J. Local Privacy and Statistical Minimax Rates[C]// IEEE. 2013 IEEE 54th Annual Symposium on Foundations of Computer Science. New York: IEEE, 2013: 429-438. |
| [11] | KALMAN R E. A New Approach to Linear Filtering and Prediction Problems[J]. Journal of Basic Engineering, 1960, 82(1): 35-45. |
| [12] | HADIAN M, LIANG Xiaohui, ALTUWAIYAN T, et al. Privacy-Preserving Health Data Release with Pattern Consistency[C]// IEEE.GLOBECOM 2016-2016 IEEE Communications Society. New York: IEEE, 2016: 1-6. |
| [13] | PREMA K, SRIHARSHA A. Differential Privacy in Big Data Analytics for Haptic Applications[J]. International Journal of Computer Engineering & Technology, 2017, 8(3): 11-19. |
| [14] | ZHANG Jiajun, LIANG Xiaohui, ZHANG Zhikun, et al. Re-DPoctor: Real-Time Health Data Releasing with W-Day Differential Privacy[C]// IEEE. GLOBECOM 2017-2017 IEEE Global Communications Conference. New York: IEEE, 2017: 1-6. |
| [15] |
GUAN Zhitao, LYU Zefang, DU Xiaojiang, et al. Achieving Data Utility-Privacy Trade off in Internet of Medical Things, a Machine Learning Approach[J]. Future Generation Computer Systems, 2019, 98: 60-68.
doi: 10.1016/j.future.2019.01.058 |
| [16] | HAN Song, ZHAO Shuai, LI Qinghua, et al. PPM-HDA: Privacy-Preserving and Multifunctional Health Data Aggregation with Fault Tolerance[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(9): 1940-1955. |
| [17] | UKIL A, JARA A J, MARIN L. Data-Driven Automated Cardiac Health Management with Robust Edge Analytics and Derisking[EB/OL]. (2019-06-18)[2024-12-01]. https://doi.org/10.3390/s19122733. |
| [18] | SALEHEEN N, CHAKRABORTY S, ALI N, et al. mSieve: Differential Behavioral Privacy in Time Series of Mobile Sensor Data[C]// ACM. The 2016 ACM International Joint Conference. New York: ACM, 2016: 706-717. |
| [19] | STEIL J, HAGESTEDT I, HUANG M X. Privacy Aware Eye Tracking Using Differential Privacy[C]// ACM. The 11th ACM Symposium. New York: ACM, 2019: 1-9. |
| [20] | BOZKIR E, GUNLU O, FUHL W, et al. Differential Privacy for Eye Tracking with Temporal Correlations[EB/OL]. (2021-08-17)[2024-12-01]. https://doi.org/10.1371/journal.pone.0255979. |
| [21] | ZHANG Siqi, LI Xiaohui. Differential Privacy Medical Data Publishing Method Based on Attribute Correlation[EB/OL]. (2022-09-21)[2024-12-01]. https://doi.org/10.1038/s41598-022-19544-3. |
| [22] | YUAN Danni, ZHU Xiaoyan, WEI Mingkui, et al. Collaborative Deep Learning for Medical Image Analysis with Differential Privacy[C]// IEEE. Global Communications Conference. New York: IEEE, 2019: 1-6. |
| [23] | ZHANG Zhenjiang, HAN Bowen, CHAO Hanchi, et al. A New Weight and Sensitivity Based Variable Maximum Distance to Aver-Age Vector Algorithm for Wearable Sensor Data Privacy Protection[J]. IEEE Access, 2019: 104045-101056. |
| [24] | TU Zixuan, LIU Shubo, XIONG Xingxing, et al. Differential Privacy Mean Publishing of Digital Stream Data for Wearable Devices[J]. Computer Application, 2020, 40(6): 1692-1697. |
|
涂子璇, 刘树波, 熊星星, 等. 可穿戴设备的数值型流数据差分隐私均值发布[J]. 计算机应用, 2020, 40(6): 1692-1697.
doi: 10.11772/j.issn.1001-9081.2019111929 |
|
| [25] | KIFER D, LIN Bingrong. Towards an Axiomatization of Statistical Privacy and Utility[C]// ACM. The Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. New York: ACM, 2010: 147-158. |
| [26] | REISS A, STRICKER D. Introducing New Benchmarked Dataset for Activity Monitoring[C]// IEEE. The 16th International Symposium on Wearable Computers, ISWC 2012. New York: IEEE, 2012: 108-109. |
| [1] | 秦金磊, 康毅敏, 李整. 智能电网中轻量级细粒度的多维多子集隐私保护数据聚合[J]. 信息网络安全, 2025, 25(5): 747-757. |
| [2] | 胡宇涵, 杨高, 蔡红叶, 付俊松. 三维分布式无线智能系统数据传输路径隐私保护方案[J]. 信息网络安全, 2025, 25(4): 536-549. |
| [3] | 何可, 王建华, 于丹, 陈永乐. 基于自适应采样的机器遗忘方法[J]. 信息网络安全, 2025, 25(4): 630-639. |
| [4] | 李佳东, 曾海涛, 彭莉, 汪晓丁. 一种保护数据隐私的匿名路由联邦学习框架[J]. 信息网络安全, 2025, 25(3): 494-503. |
| [5] | 温金明, 刘庆, 陈洁, 吴永东. 基于错误学习的全同态加密技术研究现状与挑战[J]. 信息网络安全, 2024, 24(9): 1328-1351. |
| [6] | 林湛航, 向广利, 李祯鹏, 徐子怡. 基于同态加密的前馈神经网络隐私保护方案[J]. 信息网络安全, 2024, 24(9): 1375-1385. |
| [7] | 郭倩, 赵津, 过弋. 基于分层聚类的个性化联邦学习隐私保护框架[J]. 信息网络安全, 2024, 24(8): 1196-1209. |
| [8] | 李增鹏, 王思旸, 王梅. 隐私保护近邻检测研究[J]. 信息网络安全, 2024, 24(6): 817-830. |
| [9] | 傅彦铭, 陆盛林, 陈嘉元, 覃华. 基于深度强化学习和隐私保护的群智感知动态任务分配策略[J]. 信息网络安全, 2024, 24(3): 449-461. |
| [10] | 徐健锋, 张炜, 涂敏, 魏勍颋, 赖展晴, 王倩倩. 基于语义融合轨迹生成的k匿名轨迹集补全方法[J]. 信息网络安全, 2024, 24(12): 1911-1921. |
| [11] | 裴炳森, 李欣, 樊志杰, 蒋章涛. 视频监控数据跨域安全共享传输控制系统设计与实现[J]. 信息网络安全, 2024, 24(11): 1721-1730. |
| [12] | 顾海艳, 柳琪, 马卓, 朱涛, 钱汉伟. 基于可用性的数据噪声添加方法研究[J]. 信息网络安全, 2024, 24(11): 1731-1738. |
| [13] | 宋玉涵, 祝跃飞, 魏福山. 一种基于AdaBoost模型的区块链异常交易检测方案[J]. 信息网络安全, 2024, 24(1): 24-35. |
| [14] | 许可, 李嘉怡, 蒋兴浩, 孙锬锋. 一种基于轮廓稀疏对抗的视频步态隐私保护算法[J]. 信息网络安全, 2024, 24(1): 48-59. |
| [15] | 赖成喆, 赵益宁, 郑东. 基于同态加密的隐私保护与可验证联邦学习方案[J]. 信息网络安全, 2024, 24(1): 93-105. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||